Python scipy.sparse.linalg.spilu() Examples

The following are 8 code examples of scipy.sparse.linalg.spilu(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module scipy.sparse.linalg , or try the search function .
Example #1
Source File: LinearSolver.py    From florence with MIT License 6 votes vote down vote up
def GetPreconditioner(self,A, type="amg_smoothed_aggregation"):
        """Applies a suitable preconditioner to sparse matrix A
            based on algebraic multigrid of incomplete LU/Cholesky factorisation

            input:
                A:                      [csc_matrix or csc_matrix]
                type:                   [str] either "amg_smoothed_aggregation" for
                                        a preconditioner based on algebraic multigrid
                                        or "incomplete_lu" for scipy's spilu linear
                                        operator

            returns:                    A preconditioner that can be used in conjunction
                                        with scipy's sparse linear iterative solvers
                                        (the M keyword in scipy's iterative solver)
        """

        if not (isspmatrix_csc(A) or isspmatrix_csr(A)):
            raise TypeError("Matrix must be in CSC or CSR sparse format for preconditioning")

        ml = smoothed_aggregation_solver(A)
        return ml.aspreconditioner() 
Example #2
Source File: LinearSolver.py    From florence with MIT License 5 votes vote down vote up
def SetSolver(self,linear_solver="direct", linear_solver_type="umfpack",
        apply_preconditioner=False, preconditioner="amg_smoothed_aggregation",
        iterative_solver_tolerance=1.0e-12, reduce_matrix_bandwidth=False,
        geometric_discretisation=None):
        """

            input:
                linear_solver:          [str] type of solver either "direct",
                                        "iterative", "petsc" or "amg"

                linear_solver_type      [str] type of direct or linear solver to
                                        use, for instance "umfpack", "superlu" or
                                        "mumps" for direct solvers, or "cg", "gmres"
                                        etc for iterative solvers or "amg" for algebraic
                                        multigrid solver. See WhichSolvers method for
                                        the complete set of available linear solvers

                preconditioner:         [str] either "smoothed_aggregation",
                                        or "ruge_stuben" or "rootnode" for
                                        a preconditioner based on algebraic multigrid
                                        or "ilu" for scipy's spilu linear
                                        operator

                geometric_discretisation:
                                        [str] type of geometric discretisation used, for
                                        instance for FEM discretisations this would correspond
                                        to "tri", "quad", "tet", "hex" etc

        """

        self.solver_type = linear_solver
        self.solver_subtype = "umfpack"
        self.iterative_solver_tolerance = iterative_solver_tolerance
        self.apply_preconditioner = apply_preconditioner
        self.requires_cuthill_mckee = reduce_matrix_bandwidth
        self.geometric_discretisation = geometric_discretisation 
Example #3
Source File: scipy.py    From veros with MIT License 5 votes vote down vote up
def __init__(self, vs):
        self._matrix = self._assemble_poisson_matrix(vs)
        jacobi_precon = self._jacobi_preconditioner(vs, self._matrix)
        self._matrix = jacobi_precon * self._matrix
        self._rhs_scale = jacobi_precon.diagonal()
        self._extra_args = {}

        logger.info('Computing ILU preconditioner...')
        ilu_preconditioner = spalg.spilu(self._matrix.tocsc(), drop_tol=1e-6, fill_factor=100)
        self._extra_args['M'] = spalg.LinearOperator(self._matrix.shape, ilu_preconditioner.solve) 
Example #4
Source File: linalg.py    From RBF with MIT License 5 votes vote down vote up
def __init__(self,
               A,
               drop_tol=0.005,
               fill_factor=2.0,
               normalize_inplace=False):
    # the spilu and gmres functions are most efficient with csc sparse. If the
    # matrix is already csc then this will do nothing
    A = sp.csc_matrix(A)
    n = row_norms(A)
    if normalize_inplace:
      divide_rows(A, n, inplace=True)
    else:
      A = divide_rows(A, n, inplace=False).tocsc()

    LOGGER.debug(
      'computing the ILU decomposition of a %s by %s sparse matrix with %s '
      'nonzeros ' % (A.shape + (A.nnz,)))
    ilu = spla.spilu(
      A,
      drop_rule='basic',
      drop_tol=drop_tol,
      fill_factor=fill_factor)
    LOGGER.debug('done')
    M = spla.LinearOperator(A.shape, ilu.solve)
    self.A = A
    self.M = M
    self.n = n 
Example #5
Source File: flow_matrix.py    From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 5 votes vote down vote up
def init_solver(self,L):
        global linalg
        from scipy.sparse import linalg
        ilu= linalg.spilu(self.L1.tocsc())
        n=self.n-1
        self.M = linalg.LinearOperator(shape=(n,n), matvec=ilu.solve) 
Example #6
Source File: flow_matrix.py    From Carnets with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def init_solver(self, L):
        global linalg
        from scipy.sparse import linalg
        ilu = linalg.spilu(self.L1.tocsc())
        n = self.n - 1
        self.M = linalg.LinearOperator(shape=(n, n), matvec=ilu.solve) 
Example #7
Source File: sparse_solve.py    From GridCal with GNU General Public License v3.0 5 votes vote down vote up
def ilu_linsolver(A, b):
    """
    ILU wrapper function for linear system solve A x = b
    :param A: System matrix
    :param b: right hand side
    :return: solution
    """
    return spilu(A).solve(b) 
Example #8
Source File: flow_matrix.py    From aws-kube-codesuite with Apache License 2.0 5 votes vote down vote up
def init_solver(self, L):
        global linalg
        from scipy.sparse import linalg
        ilu = linalg.spilu(self.L1.tocsc())
        n = self.n-1
        self.M = linalg.LinearOperator(shape=(n, n), matvec=ilu.solve)