Python sklearn.impute.MissingIndicator() Examples
The following are 11
code examples of sklearn.impute.MissingIndicator().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.impute
, or try the search function
.
Example #1
Source File: test_impute.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_missing_indicator_raise_on_sparse_with_missing_0(arr_type): # test for sparse input and missing_value == 0 missing_values = 0 X_fit = np.array([[missing_values, missing_values, 1], [4, missing_values, 2]]) X_trans = np.array([[missing_values, missing_values, 1], [4, 12, 10]]) # convert the input to the right array format X_fit_sparse = arr_type(X_fit) X_trans_sparse = arr_type(X_trans) indicator = MissingIndicator(missing_values=missing_values) with pytest.raises(ValueError, match="Sparse input with missing_values=0"): indicator.fit_transform(X_fit_sparse) indicator.fit_transform(X_fit) with pytest.raises(ValueError, match="Sparse input with missing_values=0"): indicator.transform(X_trans_sparse)
Example #2
Source File: base.py From sagemaker-scikit-learn-extension with Apache License 2.0 | 6 votes |
def fit(self, X, y=None): """Fit the transformer on X. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Input data, where ``n_samples`` is the number of samples and ``n_features`` is the number of features. Returns ------- self : RobustMissingIndicator """ X = self._validate_input(X) self.vectorized_mask_function_ = self.mask_function or is_finite_numeric X = _apply_mask(X, _get_mask(X, self.vectorized_mask_function_)) self.missing_indicator_ = MissingIndicator(features=self.features, error_on_new=self.error_on_new) self.missing_indicator_.fit(X) return self
Example #3
Source File: test_impute.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_missing_indicator_error(X_fit, X_trans, params, msg_err): indicator = MissingIndicator(missing_values=-1) indicator.set_params(**params) with pytest.raises(ValueError, match=msg_err): indicator.fit(X_fit).transform(X_trans)
Example #4
Source File: test_impute.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_missing_indicator_sparse_param(arr_type, missing_values, param_sparse): # check the format of the output with different sparse parameter X_fit = np.array([[missing_values, missing_values, 1], [4, missing_values, 2]]) X_trans = np.array([[missing_values, missing_values, 1], [4, 12, 10]]) X_fit = arr_type(X_fit).astype(np.float64) X_trans = arr_type(X_trans).astype(np.float64) indicator = MissingIndicator(missing_values=missing_values, sparse=param_sparse) X_fit_mask = indicator.fit_transform(X_fit) X_trans_mask = indicator.transform(X_trans) if param_sparse is True: assert X_fit_mask.format == 'csc' assert X_trans_mask.format == 'csc' elif param_sparse == 'auto' and missing_values == 0: assert isinstance(X_fit_mask, np.ndarray) assert isinstance(X_trans_mask, np.ndarray) elif param_sparse is False: assert isinstance(X_fit_mask, np.ndarray) assert isinstance(X_trans_mask, np.ndarray) else: if sparse.issparse(X_fit): assert X_fit_mask.format == 'csc' assert X_trans_mask.format == 'csc' else: assert isinstance(X_fit_mask, np.ndarray) assert isinstance(X_trans_mask, np.ndarray)
Example #5
Source File: test_impute.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_missing_indicator_string(): X = np.array([['a', 'b', 'c'], ['b', 'c', 'a']], dtype=object) indicator = MissingIndicator(missing_values='a', features='all') X_trans = indicator.fit_transform(X) assert_array_equal(X_trans, np.array([[True, False, False], [False, False, True]]))
Example #6
Source File: test_impute.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_missing_indicator_no_missing(): # check that all features are dropped if there are no missing values when # features='missing-only' (#13491) X = np.array([[1, 1], [1, 1]]) mi = MissingIndicator(features='missing-only', missing_values=-1) Xt = mi.fit_transform(X) assert Xt.shape[1] == 0
Example #7
Source File: test_impute.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_missing_indicator_sparse_no_explicit_zeros(): # Check that non missing values don't become explicit zeros in the mask # generated by missing indicator when X is sparse. (#13491) X = sparse.csr_matrix([[0, 1, 2], [1, 2, 0], [2, 0, 1]]) mi = MissingIndicator(features='all', missing_values=1) Xt = mi.fit_transform(X) assert Xt.getnnz() == Xt.sum()
Example #8
Source File: missing_indicator.py From lale with Apache License 2.0 | 5 votes |
def fit(self, X, y=None): self._wrapped_model = SKLModel(**self._hyperparams) if (y is not None): self._wrapped_model.fit(X, y) else: self._wrapped_model.fit(X) return self
Example #9
Source File: missing_indicator.py From lale with Apache License 2.0 | 5 votes |
def __init__(self, missing_values='nan', features='missing-only', sparse='auto', error_on_new=True): self._hyperparams = { 'missing_values': missing_values, 'features': features, 'sparse': sparse, 'error_on_new': error_on_new} self._wrapped_model = Op(**self._hyperparams)
Example #10
Source File: imputer.py From pyts with BSD 3-Clause "New" or "Revised" License | 5 votes |
def transform(self, X): """Perform imputation using interpolation. Parameters ---------- X : array-like, shape = (n_samples, n_timestamps) Data with missing values. Returns ------- X_new : array-like, shape = (n_samples, n_timestamps) Data without missing values. """ missing_values, force_all_finite = self._check_params() X = check_array(X, dtype='float64', force_all_finite=force_all_finite) n_samples, n_timestamps = X.shape indicator = MissingIndicator( missing_values=missing_values, features='all', sparse=False, ) non_missing_idx = ~(indicator.fit_transform(X)) x_new = np.arange(n_timestamps) X_imputed = np.asarray( [self._impute_one_sample(X[i], non_missing_idx[i], x_new) for i in range(n_samples)] ) return X_imputed
Example #11
Source File: test_impute.py From Mastering-Elasticsearch-7.0 with MIT License | 4 votes |
def test_missing_indicator_new(missing_values, arr_type, dtype, param_features, n_features, features_indices): X_fit = np.array([[missing_values, missing_values, 1], [4, 2, missing_values]]) X_trans = np.array([[missing_values, missing_values, 1], [4, 12, 10]]) X_fit_expected = np.array([[1, 1, 0], [0, 0, 1]]) X_trans_expected = np.array([[1, 1, 0], [0, 0, 0]]) # convert the input to the right array format and right dtype X_fit = arr_type(X_fit).astype(dtype) X_trans = arr_type(X_trans).astype(dtype) X_fit_expected = X_fit_expected.astype(dtype) X_trans_expected = X_trans_expected.astype(dtype) indicator = MissingIndicator(missing_values=missing_values, features=param_features, sparse=False) X_fit_mask = indicator.fit_transform(X_fit) X_trans_mask = indicator.transform(X_trans) assert X_fit_mask.shape[1] == n_features assert X_trans_mask.shape[1] == n_features assert_array_equal(indicator.features_, features_indices) assert_allclose(X_fit_mask, X_fit_expected[:, features_indices]) assert_allclose(X_trans_mask, X_trans_expected[:, features_indices]) assert X_fit_mask.dtype == bool assert X_trans_mask.dtype == bool assert isinstance(X_fit_mask, np.ndarray) assert isinstance(X_trans_mask, np.ndarray) indicator.set_params(sparse=True) X_fit_mask_sparse = indicator.fit_transform(X_fit) X_trans_mask_sparse = indicator.transform(X_trans) assert X_fit_mask_sparse.dtype == bool assert X_trans_mask_sparse.dtype == bool assert X_fit_mask_sparse.format == 'csc' assert X_trans_mask_sparse.format == 'csc' assert_allclose(X_fit_mask_sparse.toarray(), X_fit_mask) assert_allclose(X_trans_mask_sparse.toarray(), X_trans_mask)