Python nets.mobilenet.mobilenet.training_scope() Examples
The following are 30
code examples of nets.mobilenet.mobilenet.training_scope().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
nets.mobilenet.mobilenet
, or try the search function
.
Example #1
Source File: mobilenet_v2.py From SENet-tensorflow-slim with MIT License | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #2
Source File: mobilenet_v2.py From tf_ctpn with MIT License | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #3
Source File: mobilenet_v2.py From CVTron with Apache License 2.0 | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #4
Source File: mobilenet_v2.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #5
Source File: mobilenet_v2.py From MAX-Object-Detector with Apache License 2.0 | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #6
Source File: mobilenet_v2.py From edafa with MIT License | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #7
Source File: mobilenet_v2.py From MAX-Image-Segmenter with Apache License 2.0 | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #8
Source File: mobilenet_v2.py From models with Apache License 2.0 | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #9
Source File: mobilenet_v2.py From CBAM-tensorflow-slim with MIT License | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #10
Source File: mobilenet_v2.py From DeepLab_v3 with MIT License | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #11
Source File: mobilenet_v2.py From Gun-Detector with Apache License 2.0 | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #12
Source File: mobilenet_v2.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #13
Source File: mobilenet_v2.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 6 votes |
def training_scope(**kwargs): """Defines MobilenetV2 training scope. Usage: with tf.contrib.slim.arg_scope(mobilenet_v2.training_scope()): logits, endpoints = mobilenet_v2.mobilenet(input_tensor) with slim. Args: **kwargs: Passed to mobilenet.training_scope. The following parameters are supported: weight_decay- The weight decay to use for regularizing the model. stddev- Standard deviation for initialization, if negative uses xavier. dropout_keep_prob- dropout keep probability bn_decay- decay for the batch norm moving averages. Returns: An `arg_scope` to use for the mobilenet v2 model. """ return lib.training_scope(**kwargs)
Example #14
Source File: mobilenet_v2_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self): sc = mobilenet.training_scope(is_training=False) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope(is_training=True) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope() self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
Example #15
Source File: mobilenet_v2_test.py From SENet-tensorflow-slim with MIT License | 5 votes |
def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self): sc = mobilenet.training_scope(is_training=False) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope(is_training=True) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope() self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
Example #16
Source File: mobilenet_v2_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self): sc = mobilenet.training_scope(is_training=None) self.assertNotIn('is_training', sc[slim.arg_scope_func_key( slim.batch_norm)])
Example #17
Source File: mobilenet_v2_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self): sc = mobilenet.training_scope(is_training=False) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope(is_training=True) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope() self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
Example #18
Source File: mobilenet_v2_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self): sc = mobilenet.training_scope(is_training=None) self.assertNotIn('is_training', sc[slim.arg_scope_func_key( slim.batch_norm)])
Example #19
Source File: mobilenet_v2_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self): sc = mobilenet.training_scope(is_training=False) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope(is_training=True) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope() self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
Example #20
Source File: mobilenet_v2_test.py From models with Apache License 2.0 | 5 votes |
def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self): sc = mobilenet.training_scope(is_training=None) self.assertNotIn('is_training', sc[slim.arg_scope_func_key( slim.batch_norm)])
Example #21
Source File: mobilenet_v2_test.py From models with Apache License 2.0 | 5 votes |
def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self): sc = mobilenet.training_scope(is_training=False) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope(is_training=True) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope() self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
Example #22
Source File: mobilenet_v2_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self): sc = mobilenet.training_scope(is_training=None) self.assertNotIn('is_training', sc[slim.arg_scope_func_key( slim.batch_norm)])
Example #23
Source File: mobilenet_v2_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self): sc = mobilenet.training_scope(is_training=False) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope(is_training=True) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope() self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
Example #24
Source File: mobilenet_v2_test.py From SENet-tensorflow-slim with MIT License | 5 votes |
def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self): sc = mobilenet.training_scope(is_training=None) self.assertNotIn('is_training', sc[slim.arg_scope_func_key( slim.batch_norm)])
Example #25
Source File: mobilenet_v2_test.py From MAX-Image-Segmenter with Apache License 2.0 | 5 votes |
def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self): sc = mobilenet.training_scope(is_training=False) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope(is_training=True) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope() self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
Example #26
Source File: mobilenet_v2_test.py From MAX-Image-Segmenter with Apache License 2.0 | 5 votes |
def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self): sc = mobilenet.training_scope(is_training=None) self.assertNotIn('is_training', sc[slim.arg_scope_func_key( slim.batch_norm)])
Example #27
Source File: mobilenet_v2_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self): sc = mobilenet.training_scope(is_training=None) self.assertNotIn('is_training', sc[slim.arg_scope_func_key( slim.batch_norm)])
Example #28
Source File: mobilenet_v2_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self): sc = mobilenet.training_scope(is_training=False) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope(is_training=True) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope() self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])
Example #29
Source File: mobilenet_v2_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def testBatchNormScopeDoesNotHaveIsTrainingWhenItsSetToNone(self): sc = mobilenet.training_scope(is_training=None) self.assertNotIn('is_training', sc[slim.arg_scope_func_key( slim.batch_norm)])
Example #30
Source File: mobilenet_v2_test.py From CBAM-tensorflow-slim with MIT License | 5 votes |
def testBatchNormScopeDoesHasIsTrainingWhenItsNotNone(self): sc = mobilenet.training_scope(is_training=False) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope(is_training=True) self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)]) sc = mobilenet.training_scope() self.assertIn('is_training', sc[slim.arg_scope_func_key(slim.batch_norm)])