Python tensorflow.keras.utils.to_categorical() Examples
The following are 30
code examples of tensorflow.keras.utils.to_categorical().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.keras.utils
, or try the search function
.
Example #1
Source File: test_cfproto.py From alibi with Apache License 2.0 | 6 votes |
def tf_keras_iris(tf_keras_iris_model, tf_keras_iris_ae): X, y = load_iris(return_X_y=True) X = (X - X.mean(axis=0)) / X.std(axis=0) # scale dataset idx = 145 X_train, y_train = X[:idx, :], y[:idx] # y_train = to_categorical(y_train) # TODO: fine to leave as is? # set random seed np.random.seed(1) tf.set_random_seed(1) model = tf_keras_iris_model model.fit(X_train, y_train, batch_size=128, epochs=500, verbose=0) ae, enc, _ = tf_keras_iris_ae ae.fit(X_train, X_train, batch_size=32, epochs=100, verbose=0) return X_train, model, ae, enc
Example #2
Source File: test_preprocessor.py From MIScnn with GNU General Public License v3.0 | 6 votes |
def test_PREPROCESSOR_patchwisecrop_skipBlanks(self): sample_list = self.data_io3D.get_indiceslist() pp = Preprocessor(self.data_io3D, data_aug=None, batch_size=1, analysis="patchwise-crop", patch_shape=(4,4,4)) pp.patchwise_skip_blanks = True batches = pp.run(sample_list[0:3], training=True, validation=False) sample = self.data_io3D.sample_loader(sample_list[0], load_seg=True) sample.seg_data = to_categorical(sample.seg_data, num_classes=sample.classes) ready_data = pp.analysis_patchwise_crop(sample, data_aug=False) self.assertEqual(len(ready_data), 1) self.assertEqual(ready_data[0][0].shape, (4,4,4,1)) self.assertEqual(ready_data[0][1].shape, (4,4,4,3)) #-------------------------------------------------# # Analysis: Patchwise-grid # #-------------------------------------------------#
Example #3
Source File: test_preprocessor.py From MIScnn with GNU General Public License v3.0 | 6 votes |
def test_PREPROCESSOR_patchwisegrid_2D(self): sample_list = self.data_io2D.get_indiceslist() pp = Preprocessor(self.data_io2D, data_aug=None, batch_size=1, analysis="patchwise-grid", patch_shape=(4,4)) batches = pp.run(sample_list[0:1], training=False, validation=False) self.assertEqual(len(batches), 16) sample = self.data_io2D.sample_loader(sample_list[0], load_seg=True) sample.seg_data = to_categorical(sample.seg_data, num_classes=sample.classes) pp = Preprocessor(self.data_io2D, data_aug=None, batch_size=1, analysis="patchwise-grid", patch_shape=(5,5)) ready_data = pp.analysis_patchwise_grid(sample, data_aug=False, training=True) self.assertEqual(len(ready_data), 16) self.assertEqual(ready_data[0][0].shape, (5,5,1)) self.assertEqual(ready_data[0][1].shape, (5,5,3))
Example #4
Source File: shapelets.py From tslearn with BSD 2-Clause "Simplified" License | 6 votes |
def _preprocess_labels(self, y): self.classes_ = unique_labels(y) n_labels = len(self.classes_) if n_labels == 1: raise ValueError("Classifier can't train when only one class " "is present.") if self.classes_.dtype in [numpy.int32, numpy.int64]: self.label_to_ind_ = {int(lab): ind for ind, lab in enumerate(self.classes_)} else: self.label_to_ind_ = {lab: ind for ind, lab in enumerate(self.classes_)} y_ind = numpy.array( [self.label_to_ind_[lab] for lab in y] ) y_ = to_categorical(y_ind) if n_labels == 2: y_ = y_[:, 1:] # Keep only indicator of positive class return y_
Example #5
Source File: test_supervised.py From ivis with GNU General Public License v2.0 | 6 votes |
def test_svm_score_samples(): iris = datasets.load_iris() x = iris.data y = iris.target supervision_metric = 'categorical_hinge' ivis_iris = Ivis(k=15, batch_size=16, epochs=5, supervision_metric=supervision_metric) # Correctly formatted one-hot labels train successfully y = to_categorical(y) embeddings = ivis_iris.fit_transform(x, y) y_pred = ivis_iris.score_samples(x) loss_name = ivis_iris.model_.loss['supervised'].__name__ assert losses.get(loss_name).__name__ == losses.get(supervision_metric).__name__ assert ivis_iris.model_.layers[-1].activation.__name__ == 'linear' assert ivis_iris.model_.layers[-1].kernel_regularizer is not None assert ivis_iris.model_.layers[-1].output_shape[-1] == y.shape[-1]
Example #6
Source File: mine-13.8.1.py From Advanced-Deep-Learning-with-Keras with MIT License | 6 votes |
def load_eval_dataset(self): """Pre-load test data for evaluation """ (_, _), (x_test, self.y_test) = \ self.args.dataset.load_data() image_size = x_test.shape[1] x_test = np.reshape(x_test, [-1, image_size, image_size, 1]) x_test = x_test.astype('float32') / 255 x_eval = np.zeros([x_test.shape[0], *self.train_gen.input_shape]) for i in range(x_eval.shape[0]): x_eval[i] = center_crop(x_test[i]) self.y_test = to_categorical(self.y_test) self.x_test = x_eval
Example #7
Source File: test_preprocessor.py From MIScnn with GNU General Public License v3.0 | 6 votes |
def test_PREPROCESSOR_patchwisegrid_3D(self): sample_list = self.data_io3D.get_indiceslist() pp = Preprocessor(self.data_io3D, data_aug=None, batch_size=1, analysis="patchwise-grid", patch_shape=(4,4,4)) batches = pp.run(sample_list[0:1], training=False, validation=False) self.assertEqual(len(batches), 64) sample = self.data_io3D.sample_loader(sample_list[0], load_seg=True) sample.seg_data = to_categorical(sample.seg_data, num_classes=sample.classes) pp = Preprocessor(self.data_io3D, data_aug=None, batch_size=1, analysis="patchwise-grid", patch_shape=(5,5,5)) ready_data = pp.analysis_patchwise_grid(sample, data_aug=False, training=True) self.assertEqual(len(ready_data), 64) self.assertEqual(ready_data[0][0].shape, (5,5,5,1)) self.assertEqual(ready_data[0][1].shape, (5,5,5,3))
Example #8
Source File: fcn-12.3.1.py From Advanced-Deep-Learning-with-Keras with MIT License | 6 votes |
def segment_objects(self, image, normalized=True): """Run segmentation prediction for a given image Arguments: image (tensor): Image loaded in a numpy tensor. RGB components range is [0.0, 1.0] normalized (Bool): Use normalized=True for pixel-wise categorical prediction. False if segmentation will be displayed in RGB image format. """ from tensorflow.keras.utils import to_categorical image = np.expand_dims(image, axis=0) segmentation = self.fcn.predict(image) segmentation = np.squeeze(segmentation, axis=0) segmentation = np.argmax(segmentation, axis=-1) segmentation = to_categorical(segmentation, num_classes=self.n_classes) if not normalized: segmentation = segmentation * 255 segmentation = segmentation.astype('uint8') return segmentation
Example #9
Source File: test_preprocessor.py From MIScnn with GNU General Public License v3.0 | 6 votes |
def test_PREPROCESSOR_fullimage_2D(self): sample_list = self.data_io2D.get_indiceslist() pp = Preprocessor(self.data_io2D, data_aug=None, batch_size=2, analysis="fullimage") batches = pp.run(sample_list[0:3], training=True, validation=False) self.assertEqual(len(batches), 2) batches = pp.run(sample_list[0:1], training=False, validation=False) self.assertEqual(len(batches), 1) sample = self.data_io2D.sample_loader(sample_list[0], load_seg=True) sample.seg_data = to_categorical(sample.seg_data, num_classes=sample.classes) ready_data = pp.analysis_fullimage(sample, data_aug=False, training=True) self.assertEqual(len(ready_data), 1) self.assertEqual(ready_data[0][0].shape, (16,16,1)) self.assertEqual(ready_data[0][1].shape, (16,16,3))
Example #10
Source File: test_preprocessor.py From MIScnn with GNU General Public License v3.0 | 6 votes |
def test_PREPROCESSOR_fullimage_3D(self): sample_list = self.data_io3D.get_indiceslist() pp = Preprocessor(self.data_io3D, data_aug=None, batch_size=2, analysis="fullimage") batches = pp.run(sample_list[0:3], training=True, validation=False) self.assertEqual(len(batches), 2) batches = pp.run(sample_list[0:1], training=False, validation=False) self.assertEqual(len(batches), 1) sample = self.data_io3D.sample_loader(sample_list[0], load_seg=True) sample.seg_data = to_categorical(sample.seg_data, num_classes=sample.classes) ready_data = pp.analysis_fullimage(sample, data_aug=False, training=True) self.assertEqual(len(ready_data), 1) self.assertEqual(ready_data[0][0].shape, (16,16,16,1)) self.assertEqual(ready_data[0][1].shape, (16,16,16,3))
Example #11
Source File: test_dataaugmentation.py From MIScnn with GNU General Public License v3.0 | 6 votes |
def setUpClass(self): np.random.seed(1234) # Create 2D data img2D = np.random.rand(1, 16, 16, 1) * 255 self.img2D = img2D.astype(int) seg2D = np.random.rand(1, 16, 16, 1) * 3 self.seg2D = seg2D.astype(int) self.seg2D = to_categorical(self.seg2D, num_classes=3) # Create 3D data img3D = np.random.rand(1, 16, 16, 16, 1) * 255 self.img3D = img3D.astype(int) seg3D = np.random.rand(1, 16, 16, 16, 1) * 3 self.seg3D = seg3D.astype(int) self.seg3D = to_categorical(self.seg3D, num_classes=3) #-------------------------------------------------# # Base Functionality # #-------------------------------------------------# # Class Creation
Example #12
Source File: test_datagenerator.py From MIScnn with GNU General Public License v3.0 | 6 votes |
def test_DATAGENERATOR_consistency(self): pp_fi = Preprocessor(self.data_io, batch_size=1, data_aug=None, prepare_subfunctions=False, prepare_batches=False, analysis="fullimage") data_gen = DataGenerator(self.sample_list, pp_fi, training=True, shuffle=False, iterations=None) i = 0 for batch in data_gen: sample = self.data_io.sample_loader(self.sample_list[i], load_seg=True) self.assertTrue(np.array_equal(batch[0][0], sample.img_data)) seg = to_categorical(sample.seg_data, num_classes=3) self.assertTrue(np.array_equal(batch[1][0], seg)) i += 1 # Iteration fixation test
Example #13
Source File: utils.py From alibi with Apache License 2.0 | 6 votes |
def fashion_mnist_dataset(): """ Load and prepare Fashion MNIST dataset. """ (x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data() x_train = x_train.astype('float32') / 255 x_train = np.reshape(x_train, x_train.shape + (1,)) y_train = to_categorical(y_train) return { 'X_train': x_train, 'y_train': y_train, 'X_test': x_test, 'y_test': y_test, 'preprocessor': None, 'metadata': {'name': 'fashion_mnist'}, }
Example #14
Source File: test_subfunctions.py From MIScnn with GNU General Public License v3.0 | 5 votes |
def test_SUBFUNCTIONS_postprocessing(self): ds = dict() for i in range(0, 10): img = np.random.rand(16, 16, 16) * 255 img = img.astype(int) seg = np.random.rand(16, 16, 16) * 3 seg = seg.astype(int) sample = (img, seg) ds["TEST.sample_" + str(i)] = sample io_interface = Dictionary_interface(ds, classes=3, three_dim=True) self.tmp_dir = tempfile.TemporaryDirectory(prefix="tmp.miscnn.") tmp_batches = os.path.join(self.tmp_dir.name, "batches") dataio = Data_IO(io_interface, input_path="", output_path="", batch_path=tmp_batches, delete_batchDir=False) sf = [Resize((9,9,9)), Normalization(), Clipping(min=-1.0, max=0.0)] pp = Preprocessor(dataio, batch_size=1, prepare_subfunctions=False, analysis="patchwise-grid", subfunctions=sf, patch_shape=(4,4,4)) sample_list = dataio.get_indiceslist() for index in sample_list: sample = dataio.sample_loader(index) for sf in pp.subfunctions: sf.preprocessing(sample, training=False) pp.cache["shape_" + str(index)] = sample.img_data.shape sample.seg_data = np.random.rand(9, 9, 9) * 3 sample.seg_data = sample.seg_data.astype(int) sample.seg_data = to_categorical(sample.seg_data, num_classes=3) data_patches = pp.analysis_patchwise_grid(sample, training=True, data_aug=False) seg_list = [] for i in range(0, len(data_patches)): seg_list.append(data_patches[i][1]) seg = np.stack(seg_list, axis=0) self.assertEqual(seg.shape, (27,4,4,4,3)) pred = pp.postprocessing(index, seg) self.assertEqual(pred.shape, (16,16,16)) self.tmp_dir.cleanup() # Run prepare subfunction of Preprocessor
Example #15
Source File: dataset_tools.py From DeepMusicClassification with MIT License | 5 votes |
def preprocess_data(X, y, width, height): """ Reshapes arrays and converts labels to one-hot arrays and splits to train and test """ X = np.array(X).reshape(-1, width, height, 1) y = np.array(y) label_encoder = LabelEncoder() y = label_encoder.fit_transform(y) y = to_categorical(y) X = X / 255.0 # normalize pixel values X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=42) return X_train, X_test, y_train, y_test
Example #16
Source File: nn.py From bugbug with Mozilla Public License 2.0 | 5 votes |
def fit(self, X, y): X_dict = numpy_to_dict(X) y = to_categorical(y) self.model = self.model_creator(X_dict, y) for (epochs, batch_size) in self.fit_params: self.model.fit(X_dict, y, epochs=epochs, batch_size=batch_size, verbose=1) return self
Example #17
Source File: main.py From AugMix_TF2 with MIT License | 5 votes |
def get_cifar_data(num_classes=10): """Loads cifar-10 data. Normalize the images and do one-hot encoding for labels""" (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() x_train = x_train.astype(np.float32) / 255. x_test = x_test.astype(np.float32) / 255. y_train_cat = to_categorical(y_train, num_classes=num_classes).astype(np.float32) y_test_cat = to_categorical(y_test, num_classes=num_classes).astype(np.float32) return x_train, y_train, x_test, y_test, y_train_cat, y_test_cat ###########################################################################
Example #18
Source File: test_preprocessor.py From MIScnn with GNU General Public License v3.0 | 5 votes |
def test_PREPROCESSOR_patchwisecrop_3D(self): sample_list = self.data_io3D.get_indiceslist() pp = Preprocessor(self.data_io3D, data_aug=None, batch_size=1, analysis="patchwise-crop", patch_shape=(4,4,4)) batches = pp.run(sample_list[0:3], training=True, validation=False) self.assertEqual(len(batches), 3) batches = pp.run(sample_list[0:1], training=False, validation=False) self.assertEqual(len(batches), 64) sample = self.data_io3D.sample_loader(sample_list[0], load_seg=True) sample.seg_data = to_categorical(sample.seg_data, num_classes=sample.classes) ready_data = pp.analysis_patchwise_crop(sample, data_aug=False) self.assertEqual(len(ready_data), 1) self.assertEqual(ready_data[0][0].shape, (4,4,4,1)) self.assertEqual(ready_data[0][1].shape, (4,4,4,3))
Example #19
Source File: test_preprocessor.py From MIScnn with GNU General Public License v3.0 | 5 votes |
def test_PREPROCESSOR_patchwisecrop_2D(self): sample_list = self.data_io2D.get_indiceslist() pp = Preprocessor(self.data_io2D, data_aug=None, batch_size=1, analysis="patchwise-crop", patch_shape=(4,4)) batches = pp.run(sample_list[0:3], training=True, validation=False) self.assertEqual(len(batches), 3) batches = pp.run(sample_list[0:1], training=False, validation=False) self.assertEqual(len(batches), 16) sample = self.data_io2D.sample_loader(sample_list[0], load_seg=True) sample.seg_data = to_categorical(sample.seg_data, num_classes=sample.classes) ready_data = pp.analysis_patchwise_crop(sample, data_aug=False) self.assertEqual(len(ready_data), 1) self.assertEqual(ready_data[0][0].shape, (4,4,1)) self.assertEqual(ready_data[0][1].shape, (4,4,3))
Example #20
Source File: 训练.py From Semantic-segmentation-of-remote-sensing-images with Apache License 2.0 | 5 votes |
def generateValidData(batch_size,data=[]): while True: valid_data = [] valid_label = [] batch = 0 for i in (range(len(data))): url = data[i] batch += 1 img = load_img(filepath + 'train/' + url) img = img_to_array(img) valid_data.append(img) label = load_img(filepath + 'label/' + url, grayscale=True) label = img_to_array(label).reshape((img_w * img_h,)) valid_label.append(label) if batch % batch_size==0: valid_data = np.array(valid_data) valid_label = np.array(valid_label).flatten() valid_label = labelencoder.transform(valid_label) valid_label = to_categorical(valid_label, num_classes=n_label) valid_label = valid_label.reshape((batch_size,img_w,img_h,n_label)) yield (valid_data,valid_label) valid_data = [] valid_label = [] batch = 0 #定义模型-网络模型
Example #21
Source File: 训练.py From Semantic-segmentation-of-remote-sensing-images with Apache License 2.0 | 5 votes |
def generateData(batch_size,data=[]): while True: train_data = [] train_label = [] batch = 0 for i in (range(len(data))): url = data[i] batch += 1 img = load_img(filepath + 'train/' + url) img = img_to_array(img) train_data.append(img) label = load_img(filepath + 'label/' + url, grayscale=True) label = img_to_array(label).reshape((img_w * img_h,)) train_label.append(label) if batch % batch_size==0: train_data = np.array(train_data) train_label = np.array(train_label).flatten() #拍平 train_label = labelencoder.transform(train_label) train_label = to_categorical(train_label, num_classes=n_label) #编码输出便签 train_label = train_label.reshape((batch_size,img_w,img_h,n_label)) yield (train_data,train_label) train_data = [] train_label = [] batch = 0 #生成测试的数据
Example #22
Source File: conftest.py From snn_toolbox with MIT License | 5 votes |
def _dataset(): (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train / 255 x_test = x_test / 255 axis = 1 if keras.backend.image_data_format() == 'channels_first' else -1 x_train = np.expand_dims(x_train, axis) x_test = np.expand_dims(x_test, axis) y_train = to_categorical(y_train, 10) y_test = to_categorical(y_test, 10) return x_train, y_train, x_test, y_test
Example #23
Source File: batcher.py From bootcamp with Apache License 2.0 | 5 votes |
def __init__(self, speakers_list): from tensorflow.keras.utils import to_categorical self.speaker_ids = sorted(speakers_list) self.int_speaker_ids = list(range(len(self.speaker_ids))) self.map_speakers_to_index = dict([(k, v) for (k, v) in zip(self.speaker_ids, self.int_speaker_ids)]) self.map_index_to_speakers = dict([(v, k) for (k, v) in zip(self.speaker_ids, self.int_speaker_ids)]) self.speaker_categories = to_categorical(self.int_speaker_ids, num_classes=len(self.speaker_ids))
Example #24
Source File: data_generator.py From Advanced-Deep-Learning-with-Keras with MIT License | 5 votes |
def _dataset(self): """Load dataset and normalize it """ dataset = self.args.dataset if self.args.train: (self.data, self.label), (_, _) = dataset.load_data() else: (_, _), (self.data, self.label) = dataset.load_data() if self.args.dataset == mnist: self.n_channels = 1 else: self.n_channels = self.data.shape[3] image_size = self.data.shape[1] side = image_size - self.crop_size self.input_shape = [side, side, self.n_channels] # from sparse label to categorical self.n_labels = len(np.unique(self.label)) self.label = to_categorical(self.label) # reshape and normalize input images orig_shape = [-1, image_size, image_size, self.n_channels] self.data = np.reshape(self.data, orig_shape) self.data = self.data.astype('float32') / 255 self.indexes = [i for i in range(self.data.shape[0])]
Example #25
Source File: example_mnist_prune.py From qkeras with Apache License 2.0 | 5 votes |
def main(): # input image dimensions img_rows, img_cols = 28, 28 # the data, shuffled and split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() if K.image_data_format() == "channels_first": x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype("float32") x_test = x_test.astype("float32") x_train /= 255 x_test /= 255 print("x_train shape:", x_train.shape) print(x_train.shape[0], "train samples") print(x_test.shape[0], "test samples") # convert class vectors to binary class matrices y_train = to_categorical(y_train, num_classes) y_test = to_categorical(y_test, num_classes) pruning_params = { "pruning_schedule": pruning_schedule.ConstantSparsity(0.75, begin_step=2000, frequency=100) } if prune_whole_model: model = build_model(input_shape) model = prune.prune_low_magnitude(model, **pruning_params) else: model = build_layerwise_model(input_shape, **pruning_params) train_and_save(model, x_train, y_train, x_test, y_test)
Example #26
Source File: deep_classifier.py From nlp-journey with Apache License 2.0 | 5 votes |
def load_data_from_scratch(self, test_size=0.2, max_len=100): assert self.train_file_path is not None, 'file must not be none ' stopwords = load_en_stopwords() with open(self.train_file_path, 'r', encoding='utf-8') as file: lines = file.readlines() lines = [line.strip() for line in lines] lines = [line.split('##') for line in lines] x = [line[0] for line in lines] x = [line.split() for line in x] data = [word for xx in x for word in xx] y = [line[0] for line in lines] counter = Counter(data) vocab = [k for k, v in counter.items() if v >= 5] word_index = {k: v for v, k in enumerate(vocab)} max_sentence_length = max([len(words) for words in x]) max_len = max_len if max_sentence_length > max_len else max_sentence_length x_data = [[word_index[word] for word in words if word in word_index.keys() and word not in stopwords] for words in x] x_data = pad_sequences(x_data, maxlen=max_len) y_data = to_categorical(y) x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=test_size) return x_train, y_train, x_test, y_test, word_index # cnn
Example #27
Source File: cgan-mnist-4.3.1.py From Advanced-Deep-Learning-with-Keras with MIT License | 4 votes |
def build_and_train_models(): # load MNIST dataset (x_train, y_train), (_, _) = mnist.load_data() # reshape data for CNN as (28, 28, 1) and normalize image_size = x_train.shape[1] x_train = np.reshape(x_train, [-1, image_size, image_size, 1]) x_train = x_train.astype('float32') / 255 num_labels = np.amax(y_train) + 1 y_train = to_categorical(y_train) model_name = "cgan_mnist" # network parameters # the latent or z vector is 100-dim latent_size = 100 batch_size = 64 train_steps = 40000 lr = 2e-4 decay = 6e-8 input_shape = (image_size, image_size, 1) label_shape = (num_labels, ) # build discriminator model inputs = Input(shape=input_shape, name='discriminator_input') labels = Input(shape=label_shape, name='class_labels') discriminator = build_discriminator(inputs, labels, image_size) # [1] or original paper uses Adam, # but discriminator converges easily with RMSprop optimizer = RMSprop(lr=lr, decay=decay) discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) discriminator.summary() # build generator model input_shape = (latent_size, ) inputs = Input(shape=input_shape, name='z_input') generator = build_generator(inputs, labels, image_size) generator.summary() # build adversarial model = generator + discriminator optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5) # freeze the weights of discriminator during adversarial training discriminator.trainable = False outputs = discriminator([generator([inputs, labels]), labels]) adversarial = Model([inputs, labels], outputs, name=model_name) adversarial.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) adversarial.summary() # train discriminator and adversarial networks models = (generator, discriminator, adversarial) data = (x_train, y_train) params = (batch_size, latent_size, train_steps, num_labels, model_name) train(models, data, params)
Example #28
Source File: get_data.py From qkeras with Apache License 2.0 | 4 votes |
def get_data(dataset_name, fast=False): """Returns dataset from tfds.""" ds_train = tfds.load(name=dataset_name, split="train", batch_size=-1) ds_test = tfds.load(name=dataset_name, split="test", batch_size=-1) dataset = tfds.as_numpy(ds_train) x_train, y_train = dataset["image"].astype(np.float32), dataset["label"] dataset = tfds.as_numpy(ds_test) x_test, y_test = dataset["image"].astype(np.float32), dataset["label"] if len(x_train.shape) == 3: x_train = x_train.reshape(x_train.shape + (1,)) x_test = x_test.reshape(x_test.shape + (1,)) x_train /= 256.0 x_test /= 256.0 x_mean = np.mean(x_train, axis=0) x_train -= x_mean x_test -= x_mean nb_classes = np.max(y_train) + 1 y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) print(x_train.shape[0], "train samples") print(x_test.shape[0], "test samples") if fast: i_train = np.arange(x_train.shape[0]) np.random.shuffle(i_train) i_test = np.arange(x_test.shape[0]) np.random.shuffle(i_test) s_x_train = x_train[i_train[0:fast]] s_y_train = y_train[i_train[0:fast]] s_x_test = x_test[i_test[0:fast]] s_y_test = y_test[i_test[0:fast]] return ((s_x_train, s_y_train), (x_train, y_train), (s_x_test, s_y_test), (x_test, y_test)) else: return (x_train, y_train), (x_test, y_test)
Example #29
Source File: dmnist.py From qkeras with Apache License 2.0 | 4 votes |
def UseNetwork(weights_f, load_weights=False): """Use DenseModel. Args: weights_f: weight file location. load_weights: load weights when it is True. """ model = QDenseModel(weights_f, load_weights) batch_size = BATCH_SIZE (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 28*28) x_test = x_test.reshape(10000, 28*28) x_train = x_train.astype("float32") x_test = x_test.astype("float32") x_train /= 256. x_test /= 256. print(x_train.shape[0], "train samples") print(x_test.shape[0], "test samples") y_train = to_categorical(y_train_, NB_CLASSES) y_test = to_categorical(y_test_, NB_CLASSES) if not load_weights: model.fit( x_train, y_train, batch_size=batch_size, epochs=NB_EPOCH, verbose=VERBOSE, validation_split=VALIDATION_SPLIT) if weights_f: model.save_weights(weights_f) score = model.evaluate(x_test, y_test, verbose=False) print("Test score:", score[0]) print("Test accuracy:", score[1]) return model, x_train
Example #30
Source File: cmnist.py From qkeras with Apache License 2.0 | 4 votes |
def UseNetwork(weights_f, load_weights=False): """Use DenseModel. Args: weights_f: weight file location. load_weights: load weights when it is True. """ model = QConv2DModel(weights_f, load_weights) batch_size = BATCH_SIZE (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 28, 28, 1) x_test = x_test.reshape(10000, 28, 28, 1) x_train = x_train.astype("float32") x_test = x_test.astype("float32") x_train /= 256. x_test /= 256. print(x_train.shape[0], "train samples") print(x_test.shape[0], "test samples") y_train = to_categorical(y_train, NB_CLASSES) y_test = to_categorical(y_test, NB_CLASSES) if not load_weights: model.fit( x_train, y_train, batch_size=batch_size, epochs=NB_EPOCH, verbose=VERBOSE, validation_split=VALIDATION_SPLIT) if weights_f: model.save_weights(weights_f) score = model.evaluate(x_test, y_test, verbose=False) print("Test score:", score[0]) print("Test accuracy:", score[1]) return model, x_train, x_test