Python object_detection.models.feature_map_generators.KerasMultiResolutionFeatureMaps() Examples
The following are 14
code examples of object_detection.models.feature_map_generators.KerasMultiResolutionFeatureMaps().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.models.feature_map_generators
, or try the search function
.
Example #1
Source File: feature_map_generators_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def _build_feature_map_generator(self, feature_map_layout, use_keras, pool_residual=False): if use_keras: return feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, freeze_batchnorm=False, is_training=True, conv_hyperparams=self._build_conv_hyperparams(), name='FeatureMaps' ) else: def feature_map_generator(image_features): return feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, image_features=image_features, pool_residual=pool_residual) return feature_map_generator
Example #2
Source File: feature_map_generators_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 6 votes |
def _build_feature_map_generator(self, feature_map_layout, use_keras, pool_residual=False): if use_keras: return feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, freeze_batchnorm=False, is_training=True, conv_hyperparams=self._build_conv_hyperparams(), name='FeatureMaps' ) else: def feature_map_generator(image_features): return feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, image_features=image_features, pool_residual=pool_residual) return feature_map_generator
Example #3
Source File: feature_map_generators_test.py From MAX-Object-Detector with Apache License 2.0 | 6 votes |
def _build_feature_map_generator(self, feature_map_layout, use_keras, pool_residual=False): if use_keras: return feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, freeze_batchnorm=False, is_training=True, conv_hyperparams=self._build_conv_hyperparams(), name='FeatureMaps' ) else: def feature_map_generator(image_features): return feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, image_features=image_features, pool_residual=pool_residual) return feature_map_generator
Example #4
Source File: feature_map_generators_test.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def _build_feature_map_generator(self, feature_map_layout, use_keras, pool_residual=False): if use_keras: return feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, freeze_batchnorm=False, is_training=True, conv_hyperparams=self._build_conv_hyperparams(), name='FeatureMaps' ) else: def feature_map_generator(image_features): return feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, image_features=image_features, pool_residual=pool_residual) return feature_map_generator
Example #5
Source File: feature_map_generators_test.py From models with Apache License 2.0 | 6 votes |
def _build_feature_map_generator(self, feature_map_layout, pool_residual=False): if tf_version.is_tf2(): return feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, freeze_batchnorm=False, is_training=True, conv_hyperparams=self._build_conv_hyperparams(), name='FeatureMaps' ) else: def feature_map_generator(image_features): return feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, image_features=image_features, pool_residual=pool_residual) return feature_map_generator
Example #6
Source File: feature_map_generators_test.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def _build_feature_map_generator(self, feature_map_layout, use_keras, pool_residual=False): if use_keras: return feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, freeze_batchnorm=False, is_training=True, conv_hyperparams=self._build_conv_hyperparams(), name='FeatureMaps' ) else: def feature_map_generator(image_features): return feature_map_generators.multi_resolution_feature_maps( feature_map_layout=feature_map_layout, depth_multiplier=1, min_depth=32, insert_1x1_conv=True, image_features=image_features, pool_residual=pool_residual) return feature_map_generator
Example #7
Source File: ssd_mobilenet_v2_keras_feature_extractor.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def build(self, input_shape): full_mobilenet_v2 = mobilenet_v2.mobilenet_v2( batchnorm_training=(self._is_training and not self._freeze_batchnorm), conv_hyperparams=(self._conv_hyperparams if self._override_base_feature_extractor_hyperparams else None), weights=None, use_explicit_padding=self._use_explicit_padding, alpha=self._depth_multiplier, min_depth=self._min_depth, include_top=False) conv2d_11_pointwise = full_mobilenet_v2.get_layer( name='block_13_expand_relu').output conv2d_13_pointwise = full_mobilenet_v2.get_layer(name='out_relu').output self.mobilenet_v2 = tf.keras.Model( inputs=full_mobilenet_v2.inputs, outputs=[conv2d_11_pointwise, conv2d_13_pointwise]) self.feature_map_generator = ( feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=self._feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, is_training=self._is_training, conv_hyperparams=self._conv_hyperparams, freeze_batchnorm=self._freeze_batchnorm, name='FeatureMaps')) self.built = True
Example #8
Source File: ssd_mobilenet_v1_keras_feature_extractor.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def build(self, input_shape): full_mobilenet_v1 = mobilenet_v1.mobilenet_v1( batchnorm_training=(self._is_training and not self._freeze_batchnorm), conv_hyperparams=(self._conv_hyperparams if self._override_base_feature_extractor_hyperparams else None), weights=None, use_explicit_padding=self._use_explicit_padding, alpha=self._depth_multiplier, min_depth=self._min_depth, include_top=False) conv2d_11_pointwise = full_mobilenet_v1.get_layer( name='conv_pw_11_relu').output conv2d_13_pointwise = full_mobilenet_v1.get_layer( name='conv_pw_13_relu').output self._mobilenet_v1 = tf.keras.Model( inputs=full_mobilenet_v1.inputs, outputs=[conv2d_11_pointwise, conv2d_13_pointwise]) self._feature_map_generator = ( feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=self._feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, is_training=self._is_training, conv_hyperparams=self._conv_hyperparams, freeze_batchnorm=self._freeze_batchnorm, name='FeatureMaps')) self.built = True
Example #9
Source File: ssd_mobilenet_v2_keras_feature_extractor.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def build(self, input_shape): full_mobilenet_v2 = mobilenet_v2.mobilenet_v2( batchnorm_training=(self._is_training and not self._freeze_batchnorm), conv_hyperparams=(self._conv_hyperparams if self._override_base_feature_extractor_hyperparams else None), weights=None, use_explicit_padding=self._use_explicit_padding, alpha=self._depth_multiplier, min_depth=self._min_depth, include_top=False) conv2d_11_pointwise = full_mobilenet_v2.get_layer( name='block_13_expand_relu').output conv2d_13_pointwise = full_mobilenet_v2.get_layer(name='out_relu').output self.mobilenet_v2 = tf.keras.Model( inputs=full_mobilenet_v2.inputs, outputs=[conv2d_11_pointwise, conv2d_13_pointwise]) self.feature_map_generator = ( feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=self._feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, is_training=self._is_training, conv_hyperparams=self._conv_hyperparams, freeze_batchnorm=self._freeze_batchnorm, name='FeatureMaps')) self.built = True
Example #10
Source File: ssd_mobilenet_v2_keras_feature_extractor.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def build(self, input_shape): full_mobilenet_v2 = mobilenet_v2.mobilenet_v2( batchnorm_training=(self._is_training and not self._freeze_batchnorm), conv_hyperparams=(self._conv_hyperparams if self._override_base_feature_extractor_hyperparams else None), weights=None, use_explicit_padding=self._use_explicit_padding, alpha=self._depth_multiplier, min_depth=self._min_depth, include_top=False) conv2d_11_pointwise = full_mobilenet_v2.get_layer( name='block_13_expand_relu').output conv2d_13_pointwise = full_mobilenet_v2.get_layer(name='out_relu').output self.mobilenet_v2 = tf.keras.Model( inputs=full_mobilenet_v2.inputs, outputs=[conv2d_11_pointwise, conv2d_13_pointwise]) self.feature_map_generator = ( feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=self._feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, is_training=self._is_training, conv_hyperparams=self._conv_hyperparams, freeze_batchnorm=self._freeze_batchnorm, name='FeatureMaps')) self.built = True
Example #11
Source File: ssd_mobilenet_v2_keras_feature_extractor.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def build(self, input_shape): full_mobilenet_v2 = mobilenet_v2.mobilenet_v2( batchnorm_training=(self._is_training and not self._freeze_batchnorm), conv_hyperparams=(self._conv_hyperparams if self._override_base_feature_extractor_hyperparams else None), weights=None, use_explicit_padding=self._use_explicit_padding, alpha=self._depth_multiplier, min_depth=self._min_depth, include_top=False) conv2d_11_pointwise = full_mobilenet_v2.get_layer( name='block_13_expand_relu').output conv2d_13_pointwise = full_mobilenet_v2.get_layer(name='out_relu').output self.mobilenet_v2 = tf.keras.Model( inputs=full_mobilenet_v2.inputs, outputs=[conv2d_11_pointwise, conv2d_13_pointwise]) self.feature_map_generator = ( feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=self._feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, is_training=self._is_training, conv_hyperparams=self._conv_hyperparams, freeze_batchnorm=self._freeze_batchnorm, name='FeatureMaps')) self.built = True
Example #12
Source File: ssd_mobilenet_v1_keras_feature_extractor.py From models with Apache License 2.0 | 5 votes |
def build(self, input_shape): full_mobilenet_v1 = mobilenet_v1.mobilenet_v1( batchnorm_training=(self._is_training and not self._freeze_batchnorm), conv_hyperparams=(self._conv_hyperparams if self._override_base_feature_extractor_hyperparams else None), weights=None, use_explicit_padding=self._use_explicit_padding, alpha=self._depth_multiplier, min_depth=self._min_depth, include_top=False) conv2d_11_pointwise = full_mobilenet_v1.get_layer( name='conv_pw_11_relu').output conv2d_13_pointwise = full_mobilenet_v1.get_layer( name='conv_pw_13_relu').output self.classification_backbone = tf.keras.Model( inputs=full_mobilenet_v1.inputs, outputs=[conv2d_11_pointwise, conv2d_13_pointwise]) self._feature_map_generator = ( feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=self._feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, is_training=self._is_training, conv_hyperparams=self._conv_hyperparams, freeze_batchnorm=self._freeze_batchnorm, name='FeatureMaps')) self.built = True
Example #13
Source File: ssd_mobilenet_v2_keras_feature_extractor.py From models with Apache License 2.0 | 5 votes |
def build(self, input_shape): full_mobilenet_v2 = mobilenet_v2.mobilenet_v2( batchnorm_training=(self._is_training and not self._freeze_batchnorm), conv_hyperparams=(self._conv_hyperparams if self._override_base_feature_extractor_hyperparams else None), weights=None, use_explicit_padding=self._use_explicit_padding, alpha=self._depth_multiplier, min_depth=self._min_depth, include_top=False) conv2d_11_pointwise = full_mobilenet_v2.get_layer( name='block_13_expand_relu').output conv2d_13_pointwise = full_mobilenet_v2.get_layer(name='out_relu').output self.classification_backbone = tf.keras.Model( inputs=full_mobilenet_v2.inputs, outputs=[conv2d_11_pointwise, conv2d_13_pointwise]) self.feature_map_generator = ( feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=self._feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, is_training=self._is_training, conv_hyperparams=self._conv_hyperparams, freeze_batchnorm=self._freeze_batchnorm, name='FeatureMaps')) self.built = True
Example #14
Source File: ssd_mobilenet_v2_keras_feature_extractor.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def build(self, input_shape): full_mobilenet_v2 = mobilenet_v2.mobilenet_v2( batchnorm_training=(self._is_training and not self._freeze_batchnorm), conv_hyperparams=(self._conv_hyperparams if self._override_base_feature_extractor_hyperparams else None), weights=None, use_explicit_padding=self._use_explicit_padding, alpha=self._depth_multiplier, min_depth=self._min_depth, include_top=False) conv2d_11_pointwise = full_mobilenet_v2.get_layer( name='block_13_expand_relu').output conv2d_13_pointwise = full_mobilenet_v2.get_layer(name='out_relu').output self.mobilenet_v2 = tf.keras.Model( inputs=full_mobilenet_v2.inputs, outputs=[conv2d_11_pointwise, conv2d_13_pointwise]) self.feature_map_generator = ( feature_map_generators.KerasMultiResolutionFeatureMaps( feature_map_layout=self._feature_map_layout, depth_multiplier=self._depth_multiplier, min_depth=self._min_depth, insert_1x1_conv=True, is_training=self._is_training, conv_hyperparams=self._conv_hyperparams, freeze_batchnorm=self._freeze_batchnorm, name='FeatureMaps')) self.built = True