Python mxnet.metric.EvalMetric() Examples

The following are 30 code examples of mxnet.metric.EvalMetric(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module mxnet.metric , or try the search function .
Example #1
Source File: detection_module.py    From simpledet with Apache License 2.0 6 votes vote down vote up
def update_metric(self, eval_metric, labels, pre_sliced=False):
        """Evaluates and accumulates evaluation metric on outputs of the last forward computation.

        See Also
        ----------
        :meth:`BaseModule.update_metric`.

        Parameters
        ----------
        eval_metric : EvalMetric
            Evaluation metric to use.
        labels : list of NDArray if `pre_sliced` parameter is set to `False`,
            list of lists of NDArray otherwise. Typically `data_batch.label`.
        pre_sliced: bool
            Whether the labels are already sliced per device (default: False).
        """
        if mxnet.__version__ >= "1.3.0":
            self._exec_group.update_metric(eval_metric, labels, pre_sliced)
        else:
            self._exec_group.update_metric(eval_metric, labels) 
Example #2
Source File: detection_module.py    From groupsoftmax-simpledet with Apache License 2.0 6 votes vote down vote up
def update_metric(self, eval_metric, labels, pre_sliced=False):
        """Evaluates and accumulates evaluation metric on outputs of the last forward computation.

        See Also
        ----------
        :meth:`BaseModule.update_metric`.

        Parameters
        ----------
        eval_metric : EvalMetric
            Evaluation metric to use.
        labels : list of NDArray if `pre_sliced` parameter is set to `False`,
            list of lists of NDArray otherwise. Typically `data_batch.label`.
        pre_sliced: bool
            Whether the labels are already sliced per device (default: False).
        """
        if mxnet.__version__ >= "1.3.0":
            self._exec_group.update_metric(eval_metric, labels, pre_sliced)
        else:
            self._exec_group.update_metric(eval_metric, labels) 
Example #3
Source File: module.py    From Decoupled-Classification-Refinement with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #4
Source File: module.py    From Deep-Feature-Flow-Segmentation with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #5
Source File: module.py    From Decoupled-Classification-Refinement with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #6
Source File: module.py    From Decoupled-Classification-Refinement with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #7
Source File: module.py    From Decoupled-Classification-Refinement with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #8
Source File: module.py    From Sequence-Level-Semantics-Aggregation with Apache License 2.0 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #9
Source File: module.py    From Faster_RCNN_for_DOTA with Apache License 2.0 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #10
Source File: module.py    From mx-DeepIM with Apache License 2.0 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #11
Source File: module.py    From Accel with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #12
Source File: module.py    From Accel with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #13
Source File: module.py    From Accel with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #14
Source File: module.py    From Accel with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #15
Source File: module.py    From Relation-Networks-for-Object-Detection with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #16
Source File: module.py    From RoITransformer_DOTA with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #17
Source File: module.py    From RoITransformer_DOTA with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #18
Source File: module.py    From Deformable-ConvNets with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #19
Source File: module.py    From Deformable-ConvNets with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #20
Source File: module.py    From Deformable-ConvNets with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #21
Source File: module.py    From Deformable-ConvNets with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #22
Source File: module.py    From Flow-Guided-Feature-Aggregation with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #23
Source File: module.py    From Deep-Feature-Flow with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #24
Source File: module.py    From Deep-Feature-Flow with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #25
Source File: module.py    From MANet_for_Video_Object_Detection with Apache License 2.0 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #26
Source File: module.py    From kaggle-rsna18 with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #27
Source File: module.py    From kaggle-rsna18 with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #28
Source File: module.py    From kaggle-rsna18 with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #29
Source File: module.py    From kaggle-rsna18 with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels) 
Example #30
Source File: module.py    From kaggle-rsna18 with MIT License 5 votes vote down vote up
def update_metric(self, eval_metric, labels):
        """Evaluate and accumulate evaluation metric on outputs of the last forward computation.

        Parameters
        ----------
        eval_metric : EvalMetric
        labels : list of NDArray
            Typically `data_batch.label`.
        """
        self._exec_group.update_metric(eval_metric, labels)