Python fuel.datasets.IterableDataset() Examples
The following are 30
code examples of fuel.datasets.IterableDataset().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
fuel.datasets
, or try the search function
.
Example #1
Source File: test_main_loop.py From attention-lvcsr with MIT License | 6 votes |
def test_training_interrupt(): def process_batch(batch): time.sleep(0.1) algorithm = MockAlgorithm() algorithm.process_batch = process_batch main_loop = MockMainLoop( algorithm=algorithm, data_stream=IterableDataset(count()).get_example_stream(), extensions=[Printing()] ) p = Process(target=main_loop.run) p.start() time.sleep(0.1) os.kill(p.pid, signal.SIGINT) time.sleep(0.1) assert p.is_alive() os.kill(p.pid, signal.SIGINT) time.sleep(0.2) assert not p.is_alive() p.join()
Example #2
Source File: test_monitored_quantity.py From attention-lvcsr with MIT License | 6 votes |
def test_dataset_evaluators(): X = theano.tensor.vector('X') Y = theano.tensor.vector('Y') data = [numpy.arange(1, 7, dtype=theano.config.floatX).reshape(3, 2), numpy.arange(11, 17, dtype=theano.config.floatX).reshape(3, 2)] data_stream = IterableDataset(dict(X=data[0], Y=data[1])).get_example_stream() validator = DatasetEvaluator([ CrossEntropy(requires=[X, Y], name="monitored_cross_entropy0"), # to test two same quantities and make sure that state will be reset CrossEntropy(requires=[X, Y], name="monitored_cross_entropy1"), CategoricalCrossEntropy().apply(X, Y), ]) values = validator.evaluate(data_stream) numpy.testing.assert_allclose( values['monitored_cross_entropy1'], values['categoricalcrossentropy_apply_cost'])
Example #3
Source File: test_evaluators.py From attention-lvcsr with MIT License | 6 votes |
def test_dataset_evaluators(): X = theano.tensor.matrix('X') brick = TestBrick(name='test_brick') Y = brick.apply(X) graph = ComputationGraph([Y]) monitor_variables = [v for v in graph.auxiliary_variables] validator = DatasetEvaluator(monitor_variables) data = [numpy.arange(1, 5, dtype=theano.config.floatX).reshape(2, 2), numpy.arange(10, 16, dtype=theano.config.floatX).reshape(3, 2)] data_stream = IterableDataset(dict(X=data)).get_example_stream() values = validator.evaluate(data_stream) assert values['test_brick_apply_V_squared'] == 4 numpy.testing.assert_allclose( values['test_brick_apply_mean_row_mean'], numpy.vstack(data).mean()) per_batch_mean = numpy.mean([batch.mean() for batch in data]) numpy.testing.assert_allclose( values['test_brick_apply_mean_batch_element'], per_batch_mean) with assert_raises(Exception) as ar: data_stream = IterableDataset(dict(X2=data)).get_example_stream() validator.evaluate(data_stream) assert "Not all data sources" in ar.exception.args[0]
Example #4
Source File: test_main_loop.py From attention-lvcsr with MIT License | 6 votes |
def test_main_loop(): old_config_profile_value = config.profile config.profile = True main_loop = MainLoop( MockAlgorithm(), IterableDataset(range(10)).get_example_stream(), extensions=[WriteBatchExtension(), FinishAfter(after_n_epochs=2)]) main_loop.run() assert_raises(AttributeError, getattr, main_loop, 'model') assert main_loop.log.status['iterations_done'] == 20 assert main_loop.log.status['_epoch_ends'] == [10, 20] assert len(main_loop.log) == 20 for i in range(20): assert main_loop.log[i + 1]['batch'] == {'data': i % 10} config.profile = old_config_profile_value
Example #5
Source File: test_transformers.py From fuel with MIT License | 5 votes |
def test_sort_mapping_trivial_key(self): stream = DataStream(IterableDataset(self.data)) transformer = Mapping(stream, SortMapping(operator.itemgetter(0))) assert_equal(list(transformer.get_epoch_iterator()), list(zip([[1, 2, 3]] * 3)))
Example #6
Source File: test_datasets.py From fuel with MIT License | 5 votes |
def setUp(self): self.data = [1, 2, 3] self.stream = DataStream(IterableDataset(self.data))
Example #7
Source File: test_datasets.py From fuel with MIT License | 5 votes |
def test_value_error_on_nonexistent_sources(self): def instantiate_dataset(): return IterableDataset(self.data, sources=('dummy',)) assert_raises(ValueError, instantiate_dataset)
Example #8
Source File: test_datasets.py From fuel with MIT License | 5 votes |
def test_default_transformer(self): class DoublingDataset(IterableDataset): def apply_default_transformer(self, stream): return Mapping( stream, lambda sources: tuple(2 * s for s in sources)) dataset = DoublingDataset(self.data) stream = dataset.apply_default_transformer(DataStream(dataset)) assert_equal(list(stream.get_epoch_iterator()), [(2,), (4,), (6,)])
Example #9
Source File: test_datasets.py From fuel with MIT License | 5 votes |
def test_no_axis_labels(self): assert IterableDataset(self.data).axis_labels is None
Example #10
Source File: test_datasets.py From fuel with MIT License | 5 votes |
def test_axis_labels(self): axis_labels = {'data': ('batch',)} dataset = IterableDataset(self.data, axis_labels=axis_labels) assert dataset.axis_labels == axis_labels
Example #11
Source File: test_transformers.py From fuel with MIT License | 5 votes |
def test_mapping_sort_multisource_ndarrays(self): data = OrderedDict([('x', numpy.array(self.data_x)), ('y', numpy.array(self.data_y))]) data_sorted = [(numpy.array([1, 2, 3]), numpy.array([6, 5, 4])), (numpy.array([1, 2, 3]), numpy.array([4, 6, 5])), (numpy.array([1, 2, 3]), numpy.array([4, 5, 6]))] stream = DataStream(IterableDataset(data)) transformer = Mapping( stream, mapping=SortMapping(operator.itemgetter(0))) assert_equal(list(transformer.get_epoch_iterator()), data_sorted)
Example #12
Source File: test_transformers.py From fuel with MIT License | 5 votes |
def test_add_sources(self): stream = DataStream(IterableDataset(self.data)) transformer = Mapping(stream, lambda d: ([2 * i for i in d[0]],), add_sources=('doubled',)) assert_equal(transformer.sources, ('data', 'doubled')) assert_equal(list(transformer.get_epoch_iterator()), list(zip(self.data, [[2, 4, 6], [4, 6, 2], [6, 4, 2]])))
Example #13
Source File: test_transformers.py From fuel with MIT License | 5 votes |
def test_mapping_dict_add_sources(self): stream = DataStream(IterableDataset(self.data)) transformer = Mapping( stream, lambda d: {'doubled': [2 * i for i in d['data']]}, mapping_accepts=dict, add_sources=('doubled',)) assert_equal(transformer.sources, ('data', 'doubled')) assert_equal(list(transformer.get_epoch_iterator()), list(zip(self.data, [[2, 4, 6], [4, 6, 2], [6, 4, 2]])))
Example #14
Source File: test_transformers.py From attention-lvcsr with MIT License | 5 votes |
def setUp(self): stream = DataStream(IterableDataset(range(100))) self.transformer = Mapping(stream, lambda x: (x[0] + 1,))
Example #15
Source File: test_transformers.py From fuel with MIT License | 5 votes |
def test_sort_mapping_alternate_key(self): stream = DataStream(IterableDataset(self.data)) transformer = Mapping(stream, SortMapping(lambda x: -x[0])) assert_equal(list(transformer.get_epoch_iterator()), list(zip([[3, 2, 1]] * 3)))
Example #16
Source File: test_transformers.py From fuel with MIT License | 5 votes |
def test_value_error_on_request(self): stream = DataStream(IterableDataset(self.data)) transformer = Mapping(stream, lambda d: ([2 * i for i in d[0]],)) assert_raises(ValueError, transformer.get_data, [0, 1])
Example #17
Source File: test_transformers.py From fuel with MIT License | 5 votes |
def test_transform_source_batch_not_implemented(self): transformer = SourcewiseTransformer( DataStream(IterableDataset([1, 2])), True) assert_raises( NotImplementedError, transformer.transform_source_batch, None, 'foo')
Example #18
Source File: test_text.py From attention-lvcsr with MIT License | 5 votes |
def test_ngram_stream_error_on_multiple_sources(): # Check that NGram accepts only data streams with one source sentences = [list(numpy.random.randint(10, size=sentence_length)) for sentence_length in [3, 5, 7]] stream = DataStream(IterableDataset(sentences)) stream.sources = ('1', '2') assert_raises(ValueError, NGrams, 4, stream)
Example #19
Source File: test_text.py From attention-lvcsr with MIT License | 5 votes |
def test_ngram_stream(): sentences = [list(numpy.random.randint(10, size=sentence_length)) for sentence_length in [3, 5, 7]] stream = DataStream(IterableDataset(sentences)) ngrams = NGrams(4, stream) assert len(list(ngrams.get_epoch_iterator())) == 4
Example #20
Source File: test_datasets.py From fuel with MIT License | 5 votes |
def test_value_error_on_non_iterable(self): assert_raises(ValueError, IterableDataset, None)
Example #21
Source File: test_transformers.py From attention-lvcsr with MIT License | 5 votes |
def test_reset_calls_reset_on_all_streams(self): streams = [FlagDataStream(IterableDataset([1, 2, 3])), FlagDataStream(IterableDataset([4, 5, 6])), FlagDataStream(IterableDataset([7, 8, 9]))] transformer = Merge(streams, ('1', '2', '3')) transformer.reset() assert all(stream.reset_called for stream in streams)
Example #22
Source File: test_transformers.py From attention-lvcsr with MIT License | 5 votes |
def test_next_epoch_calls_next_epoch_on_all_streams(self): streams = [FlagDataStream(IterableDataset([1, 2, 3])), FlagDataStream(IterableDataset([4, 5, 6])), FlagDataStream(IterableDataset([7, 8, 9]))] transformer = Merge(streams, ('1', '2', '3')) transformer.next_epoch() assert all(stream.next_epoch_called for stream in streams)
Example #23
Source File: test_transformers.py From attention-lvcsr with MIT License | 5 votes |
def setUp(self): self.streams = ( DataStream(IterableDataset(['Hello world!'])), DataStream(IterableDataset(['Bonjour le monde!']))) self.batch_streams = ( Batch(DataStream(IterableDataset(['Hello world!', 'Hi!'])), iteration_scheme=ConstantScheme(2)), Batch(DataStream(IterableDataset(['Bonjour le monde!', 'Salut!'])), iteration_scheme=ConstantScheme(2))) self.transformer = Merge( self.streams, ('english', 'french')) self.batch_transformer = Merge( self.batch_streams, ('english', 'french'))
Example #24
Source File: test_transformers.py From attention-lvcsr with MIT License | 5 votes |
def test_value_error_on_example_stream(self): stream = DataStream( IterableDataset( dict(features=[[1], [2, 3]], targets=[[4, 5, 6], [7]]))) assert_raises(ValueError, Padding, stream)
Example #25
Source File: test_transformers.py From attention-lvcsr with MIT License | 5 votes |
def test_value_error_on_request(self): transformer = Padding(Batch( DataStream( IterableDataset( dict(features=[[1], [2, 3]], targets=[[4, 5, 6], [7]]))), ConstantScheme(2))) assert_raises(ValueError, transformer.get_data, [0, 1])
Example #26
Source File: test_transformers.py From attention-lvcsr with MIT License | 5 votes |
def test_mask_sources(self): transformer = Padding(Batch( DataStream( IterableDataset( OrderedDict([ ('features', [[1], [2, 3]]), ('targets', [[4, 5, 6], [7]])]))), ConstantScheme(2)), mask_sources=('features',)) assert_equal(len(next(transformer.get_epoch_iterator())), 3)
Example #27
Source File: test_transformers.py From attention-lvcsr with MIT License | 5 votes |
def test_mask_dtype(self): transformer = Padding(Batch( DataStream( IterableDataset( dict(features=[[1], [2, 3]], targets=[[4, 5, 6], [7]]))), ConstantScheme(2)), mask_dtype='uint8') assert_equal( str(next(transformer.get_epoch_iterator())[1].dtype), 'uint8')
Example #28
Source File: test_transformers.py From attention-lvcsr with MIT License | 5 votes |
def test_2d_sequences_error_on_unequal_shapes(self): stream = Batch( DataStream( IterableDataset([numpy.ones((3, 4)), 2 * numpy.ones((2, 3))])), ConstantScheme(2)) assert_raises(ValueError, next, Padding(stream).get_epoch_iterator())
Example #29
Source File: test_transformers.py From attention-lvcsr with MIT License | 5 votes |
def test_2d_sequences(self): stream = Batch( DataStream( IterableDataset([numpy.ones((3, 4)), 2 * numpy.ones((2, 4))])), ConstantScheme(2)) it = Padding(stream).get_epoch_iterator() data, mask = next(it) assert data.shape == (2, 3, 4) assert (data[0, :, :] == 1).all() assert (data[1, :2, :] == 2).all() assert (mask == numpy.array([[1, 1, 1], [1, 1, 0]])).all()
Example #30
Source File: test_transformers.py From attention-lvcsr with MIT License | 5 votes |
def test_1d_sequences(self): stream = Batch( DataStream(IterableDataset([[1], [2, 3], [], [4, 5, 6], [7]])), ConstantScheme(2)) transformer = Padding(stream) assert_equal(transformer.sources, ("data", "data_mask")) assert_equal(list(transformer.get_epoch_iterator()), [(numpy.array([[1, 0], [2, 3]]), numpy.array([[1, 0], [1, 1]])), (numpy.array([[0, 0, 0], [4, 5, 6]]), numpy.array([[0, 0, 0], [1, 1, 1]])), (numpy.array([[7]]), numpy.array([[1]]))])