Python fuel.datasets.MNIST Examples
The following are 13
code examples of fuel.datasets.MNIST().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
fuel.datasets
, or try the search function
.
Example #1
Source File: test_mnist.py From attention-lvcsr with MIT License | 6 votes |
def test_mnist_train(): skip_if_not_available(datasets=['mnist.hdf5']) dataset = MNIST(('train',), load_in_memory=False) handle = dataset.open() data, labels = dataset.get_data(handle, slice(0, 10)) assert data.dtype == 'uint8' assert data.shape == (10, 1, 28, 28) assert labels.shape == (10, 1) known = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 30, 36, 94, 154, 170, 253, 253, 253, 253, 253, 225, 172, 253, 242, 195, 64, 0, 0, 0, 0]) assert_allclose(data[0][0][6], known) assert labels[0][0] == 5 assert dataset.num_examples == 60000 dataset.close(handle) stream = DataStream.default_stream( dataset, iteration_scheme=SequentialScheme(10, 10)) data = next(stream.get_epoch_iterator())[0] assert data.min() >= 0.0 and data.max() <= 1.0 assert data.dtype == config.floatX
Example #2
Source File: test_mnist.py From attention-lvcsr with MIT License | 6 votes |
def test_mnist_test(): skip_if_not_available(datasets=['mnist.hdf5']) dataset = MNIST(('test',), load_in_memory=False) handle = dataset.open() data, labels = dataset.get_data(handle, slice(0, 10)) assert data.dtype == 'uint8' assert data.shape == (10, 1, 28, 28) assert labels.shape == (10, 1) known = numpy.array([0, 0, 0, 0, 0, 0, 84, 185, 159, 151, 60, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) assert_allclose(data[0][0][7], known) assert labels[0][0] == 7 assert dataset.num_examples == 10000 dataset.close(handle) stream = DataStream.default_stream( dataset, iteration_scheme=SequentialScheme(10, 10)) data = next(stream.get_epoch_iterator())[0] assert data.min() >= 0.0 and data.max() <= 1.0 assert data.dtype == config.floatX
Example #3
Source File: test_mnist.py From fuel with MIT License | 6 votes |
def test_mnist_train(): skip_if_not_available(datasets=['mnist.hdf5']) dataset = MNIST(('train',), load_in_memory=False) handle = dataset.open() data, labels = dataset.get_data(handle, slice(0, 10)) assert data.dtype == 'uint8' assert data.shape == (10, 1, 28, 28) assert labels.shape == (10, 1) known = numpy.array([0, 0, 0, 0, 0, 0, 0, 0, 30, 36, 94, 154, 170, 253, 253, 253, 253, 253, 225, 172, 253, 242, 195, 64, 0, 0, 0, 0]) assert_allclose(data[0][0][6], known) assert labels[0][0] == 5 assert dataset.num_examples == 60000 dataset.close(handle) stream = DataStream.default_stream( dataset, iteration_scheme=SequentialScheme(10, 10)) data = next(stream.get_epoch_iterator())[0] assert data.min() >= 0.0 and data.max() <= 1.0 assert data.dtype == config.floatX
Example #4
Source File: test_mnist.py From fuel with MIT License | 6 votes |
def test_mnist_test(): skip_if_not_available(datasets=['mnist.hdf5']) dataset = MNIST(('test',), load_in_memory=False) handle = dataset.open() data, labels = dataset.get_data(handle, slice(0, 10)) assert data.dtype == 'uint8' assert data.shape == (10, 1, 28, 28) assert labels.shape == (10, 1) known = numpy.array([0, 0, 0, 0, 0, 0, 84, 185, 159, 151, 60, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) assert_allclose(data[0][0][7], known) assert labels[0][0] == 7 assert dataset.num_examples == 10000 dataset.close(handle) stream = DataStream.default_stream( dataset, iteration_scheme=SequentialScheme(10, 10)) data = next(stream.get_epoch_iterator())[0] assert data.min() >= 0.0 and data.max() <= 1.0 assert data.dtype == config.floatX
Example #5
Source File: train.py From Diffusion-Probabilistic-Models with MIT License | 5 votes |
def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--batch-size', default=512, type=int, help='Batch size') parser.add_argument('--lr', default=1e-3, type=float, help='Initial learning rate. ' + \ 'Will be decayed until it\'s 1e-5.') parser.add_argument('--resume_file', default=None, type=str, help='Name of saved model to continue training') parser.add_argument('--suffix', default='', type=str, help='Optional descriptive suffix for model') parser.add_argument('--output-dir', type=str, default='./', help='Output directory to store trained models') parser.add_argument('--ext-every-n', type=int, default=25, help='Evaluate training extensions every N epochs') parser.add_argument('--model-args', type=str, default='', help='Dictionary string to be eval()d containing model arguments.') parser.add_argument('--dropout_rate', type=float, default=0., help='Rate to use for dropout during training+testing.') parser.add_argument('--dataset', type=str, default='MNIST', help='Name of dataset to use.') parser.add_argument('--plot_before_training', type=bool, default=False, help='Save diagnostic plots at epoch 0, before any training.') args = parser.parse_args() model_args = eval('dict(' + args.model_args + ')') print model_args if not os.path.exists(args.output_dir): raise IOError("Output directory '%s' does not exist. "%args.output_dir) return args, model_args
Example #6
Source File: test_mnist.py From attention-lvcsr with MIT License | 5 votes |
def test_mnist_axes(): skip_if_not_available(datasets=['mnist.hdf5']) dataset = MNIST(('train',), load_in_memory=False) assert_equal(dataset.axis_labels['features'], ('batch', 'channel', 'height', 'width'))
Example #7
Source File: test_mnist.py From attention-lvcsr with MIT License | 5 votes |
def test_mnist_invalid_split(): skip_if_not_available(datasets=['mnist.hdf5']) assert_raises(ValueError, MNIST, ('dummy',))
Example #8
Source File: test_serialization.py From attention-lvcsr with MIT License | 5 votes |
def test_in_memory(): skip_if_not_available(datasets=['mnist.hdf5']) # Load MNIST and get two batches mnist = MNIST(('train',), load_in_memory=True) data_stream = DataStream(mnist, iteration_scheme=SequentialScheme( examples=mnist.num_examples, batch_size=256)) epoch = data_stream.get_epoch_iterator() for i, (features, targets) in enumerate(epoch): if i == 1: break handle = mnist.open() known_features, _ = mnist.get_data(handle, slice(256, 512)) mnist.close(handle) assert numpy.all(features == known_features) # Pickle the epoch and make sure that the data wasn't dumped with tempfile.NamedTemporaryFile(delete=False) as f: filename = f.name cPickle.dump(epoch, f) assert os.path.getsize(filename) < 1024 * 1024 # Less than 1MB # Reload the epoch and make sure that the state was maintained del epoch with open(filename, 'rb') as f: epoch = cPickle.load(f) features, targets = next(epoch) handle = mnist.open() known_features, _ = mnist.get_data(handle, slice(512, 768)) mnist.close(handle) assert numpy.all(features == known_features)
Example #9
Source File: run.py From ladder with MIT License | 5 votes |
def unify_labels(y): """ Work-around for Fuel bug where MNIST and Cifar-10 datasets have different dimensionalities for the targets: e.g. (50000, 1) vs (60000,) """ yshape = y.shape y = y.flatten() assert y.shape[0] == yshape[0] return y
Example #10
Source File: test_mnist.py From fuel with MIT License | 5 votes |
def test_mnist_axes(): skip_if_not_available(datasets=['mnist.hdf5']) dataset = MNIST(('train',), load_in_memory=False) assert_equal(dataset.axis_labels['features'], ('batch', 'channel', 'height', 'width'))
Example #11
Source File: test_mnist.py From fuel with MIT License | 5 votes |
def test_mnist_invalid_split(): skip_if_not_available(datasets=['mnist.hdf5']) assert_raises(ValueError, MNIST, ('dummy',))
Example #12
Source File: test_serialization.py From fuel with MIT License | 5 votes |
def test_in_memory(): skip_if_not_available(datasets=['mnist.hdf5']) # Load MNIST and get two batches mnist = MNIST(('train',), load_in_memory=True) data_stream = DataStream(mnist, iteration_scheme=SequentialScheme( examples=mnist.num_examples, batch_size=256)) epoch = data_stream.get_epoch_iterator() for i, (features, targets) in enumerate(epoch): if i == 1: break handle = mnist.open() known_features, _ = mnist.get_data(handle, slice(256, 512)) mnist.close(handle) assert numpy.all(features == known_features) # Pickle the epoch and make sure that the data wasn't dumped with tempfile.NamedTemporaryFile(delete=False) as f: filename = f.name cPickle.dump(epoch, f) assert os.path.getsize(filename) < 1024 * 1024 # Less than 1MB # Reload the epoch and make sure that the state was maintained del epoch with open(filename, 'rb') as f: epoch = cPickle.load(f) features, targets = next(epoch) handle = mnist.open() known_features, _ = mnist.get_data(handle, slice(512, 768)) mnist.close(handle) assert numpy.all(features == known_features)
Example #13
Source File: __init__.py From blocks-examples with MIT License | 4 votes |
def main(save_to, num_epochs): mlp = MLP([Tanh(), Softmax()], [784, 100, 10], weights_init=IsotropicGaussian(0.01), biases_init=Constant(0)) mlp.initialize() x = tensor.matrix('features') y = tensor.lmatrix('targets') probs = mlp.apply(x) cost = CategoricalCrossEntropy().apply(y.flatten(), probs) error_rate = MisclassificationRate().apply(y.flatten(), probs) cg = ComputationGraph([cost]) W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables) cost = cost + .00005 * (W1 ** 2).sum() + .00005 * (W2 ** 2).sum() cost.name = 'final_cost' mnist_train = MNIST(("train",)) mnist_test = MNIST(("test",)) algorithm = GradientDescent( cost=cost, parameters=cg.parameters, step_rule=Scale(learning_rate=0.1)) extensions = [Timing(), FinishAfter(after_n_epochs=num_epochs), DataStreamMonitoring( [cost, error_rate], Flatten( DataStream.default_stream( mnist_test, iteration_scheme=SequentialScheme( mnist_test.num_examples, 500)), which_sources=('features',)), prefix="test"), TrainingDataMonitoring( [cost, error_rate, aggregation.mean(algorithm.total_gradient_norm)], prefix="train", after_epoch=True), Checkpoint(save_to), Printing()] if BLOCKS_EXTRAS_AVAILABLE: extensions.append(Plot( 'MNIST example', channels=[ ['test_final_cost', 'test_misclassificationrate_apply_error_rate'], ['train_total_gradient_norm']])) main_loop = MainLoop( algorithm, Flatten( DataStream.default_stream( mnist_train, iteration_scheme=SequentialScheme( mnist_train.num_examples, 50)), which_sources=('features',)), model=Model(cost), extensions=extensions) main_loop.run()