Python librosa.__version__() Examples
The following are 7
code examples of librosa.__version__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
librosa
, or try the search function
.
Example #1
Source File: test_librosa_compatibility.py From audio with BSD 2-Clause "Simplified" License | 6 votes |
def test_create_fb(self): self._test_create_fb() self._test_create_fb(n_mels=128, sample_rate=44100) self._test_create_fb(n_mels=128, fmin=2000.0, fmax=5000.0) self._test_create_fb(n_mels=56, fmin=100.0, fmax=9000.0) self._test_create_fb(n_mels=56, fmin=800.0, fmax=900.0) self._test_create_fb(n_mels=56, fmin=1900.0, fmax=900.0) self._test_create_fb(n_mels=10, fmin=1900.0, fmax=900.0) if StrictVersion(librosa.__version__) < StrictVersion("0.7.2"): return self._test_create_fb(n_mels=128, sample_rate=44100, norm="slaney") self._test_create_fb(n_mels=128, fmin=2000.0, fmax=5000.0, norm="slaney") self._test_create_fb(n_mels=56, fmin=100.0, fmax=9000.0, norm="slaney") self._test_create_fb(n_mels=56, fmin=800.0, fmax=900.0, norm="slaney") self._test_create_fb(n_mels=56, fmin=1900.0, fmax=900.0, norm="slaney") self._test_create_fb(n_mels=10, fmin=1900.0, fmax=900.0, norm="slaney")
Example #2
Source File: music_processor.py From aurora-sdk-mac with Apache License 2.0 | 6 votes |
def check_min_versions(): ret = True # pyaudio vers_required = "0.2.7" vers_current = pyaudio.__version__ if StrictVersion(vers_current) < StrictVersion(vers_required): print("Error: minimum pyaudio vers: {}, current vers {}".format(vers_required, vers_current)) ret = False # librosa vers_required = "0.4.3" vers_current = librosa.__version__ if StrictVersion(vers_current) < StrictVersion(vers_required): print("Error: minimum librosa vers: {}, current vers {}".format(vers_required, vers_current)) ret = False # numpy vers_required = "1.9.0" vers_current = np.__version__ if StrictVersion(vers_current) < StrictVersion(vers_required): print("Error: minimum numpy vers: {}, current vers {}".format(vers_required, vers_current)) ret = False return ret
Example #3
Source File: test_features.py From msaf with MIT License | 5 votes |
def test_metadata(): """The metadata of the json file should be correct.""" # Note: The json file should have been created with previous tests with open(file_struct.features_file) as f: data = json.load(f) assert("metadata" in data.keys()) metadata = data["metadata"] assert("timestamp" in metadata.keys()) assert(metadata["versions"]["numpy"] == np.__version__) assert(metadata["versions"]["msaf"] == msaf.__version__) assert(metadata["versions"]["librosa"] == librosa.__version__)
Example #4
Source File: base.py From msaf with MIT License | 4 votes |
def write_features(self): """Saves features to file.""" out_json = collections.OrderedDict() try: # Only save the necessary information self.read_features() except (WrongFeaturesFormatError, FeaturesNotFound, NoFeaturesFileError): # We need to create the file or overwite it # Metadata out_json = collections.OrderedDict({"metadata": { "versions": {"librosa": librosa.__version__, "msaf": msaf.__version__, "numpy": np.__version__}, "timestamp": datetime.datetime.today().strftime( "%Y/%m/%d %H:%M:%S")}}) # Global parameters out_json["globals"] = { "dur": self.dur, "sample_rate": self.sr, "hop_length": self.hop_length, "audio_file": self.file_struct.audio_file } # Beats out_json["est_beats"] = self._est_beats_times.tolist() out_json["est_beatsync_times"] = self._est_beatsync_times.tolist() if self._ann_beats_times is not None: out_json["ann_beats"] = self._ann_beats_times.tolist() out_json["ann_beatsync_times"] = self._ann_beatsync_times.tolist() except FeatureParamsError: # We have other features in the file, simply add these ones with open(self.file_struct.features_file) as f: out_json = json.load(f) finally: # Specific parameters of the current features out_json[self.get_id()] = {} out_json[self.get_id()]["params"] = {} for param_name in self.get_param_names(): value = getattr(self, param_name) # Check for special case of functions if hasattr(value, '__call__'): value = value.__name__ else: value = str(value) out_json[self.get_id()]["params"][param_name] = value # Actual features out_json[self.get_id()]["framesync"] = \ self._framesync_features.tolist() out_json[self.get_id()]["est_beatsync"] = \ self._est_beatsync_features.tolist() if self._ann_beatsync_features is not None: out_json[self.get_id()]["ann_beatsync"] = \ self._ann_beatsync_features.tolist() # Save it with open(self.file_struct.features_file, "w") as f: json.dump(out_json, f, indent=2)
Example #5
Source File: convert_fbank_to_wav.py From espnet with Apache License 2.0 | 4 votes |
def griffin_lim(spc, n_fft, n_shift, win_length, window="hann", n_iters=100): """Convert linear spectrogram into waveform using Griffin-Lim. Args: spc (ndarray): Linear spectrogram (T, n_fft // 2 + 1). n_fft (int): Number of FFT points. n_shift (int): Shift size in points. win_length (int): Window length in points. window (str, optional): Window function type. n_iters (int, optionl): Number of iterations of Griffin-Lim Algorithm. Returns: ndarray: Reconstructed waveform (N,). """ # assert the size of input linear spectrogram assert spc.shape[1] == n_fft // 2 + 1 if LooseVersion(librosa.__version__) >= LooseVersion("0.7.0"): # use librosa's fast Grriffin-Lim algorithm spc = np.abs(spc.T) y = librosa.griffinlim( S=spc, n_iter=n_iters, hop_length=n_shift, win_length=win_length, window=window, center=True if spc.shape[1] > 1 else False, ) else: # use slower version of Grriffin-Lim algorithm logging.warning( "librosa version is old. use slow version of Grriffin-Lim algorithm." "if you want to use fast Griffin-Lim, please update librosa via " "`source ./path.sh && pip install librosa==0.7.0`." ) cspc = np.abs(spc).astype(np.complex).T angles = np.exp(2j * np.pi * np.random.rand(*cspc.shape)) y = librosa.istft(cspc * angles, n_shift, win_length, window=window) for i in range(n_iters): angles = np.exp( 1j * np.angle(librosa.stft(y, n_fft, n_shift, win_length, window=window)) ) y = librosa.istft(cspc * angles, n_shift, win_length, window=window) return y
Example #6
Source File: griffin_lim.py From espnet with Apache License 2.0 | 4 votes |
def griffin_lim( spc: np.ndarray, n_fft: int, n_shift: int, win_length: int = None, window: Optional[str] = "hann", n_iter: Optional[int] = 32, ) -> np.ndarray: """Convert linear spectrogram into waveform using Griffin-Lim. Args: spc: Linear spectrogram (T, n_fft // 2 + 1). n_fft: The number of FFT points. n_shift: Shift size in points. win_length: Window length in points. window: Window function type. n_iter: The number of iterations. Returns: Reconstructed waveform (N,). """ # assert the size of input linear spectrogram assert spc.shape[1] == n_fft // 2 + 1 if LooseVersion(librosa.__version__) >= LooseVersion("0.7.0"): # use librosa's fast Grriffin-Lim algorithm spc = np.abs(spc.T) y = librosa.griffinlim( S=spc, n_iter=n_iter, hop_length=n_shift, win_length=win_length, window=window, center=True if spc.shape[1] > 1 else False, ) else: # use slower version of Grriffin-Lim algorithm logging.warning( "librosa version is old. use slow version of Grriffin-Lim algorithm." "if you want to use fast Griffin-Lim, please update librosa via " "`source ./path.sh && pip install librosa==0.7.0`." ) cspc = np.abs(spc).astype(np.complex).T angles = np.exp(2j * np.pi * np.random.rand(*cspc.shape)) y = librosa.istft(cspc * angles, n_shift, win_length, window=window) for i in range(n_iter): angles = np.exp( 1j * np.angle(librosa.stft(y, n_fft, n_shift, win_length, window=window)) ) y = librosa.istft(cspc * angles, n_shift, win_length, window=window) return y # TODO(kan-bayashi): write as torch.nn.Module
Example #7
Source File: core.py From muda with ISC License | 4 votes |
def jam_pack(jam, **kwargs): """Pack data into a jams sandbox. If not already present, this creates a `muda` field within `jam.sandbox`, along with `history`, `state`, and version arrays which are populated by deformation objects. Any additional fields can be added to the `muda` sandbox by supplying keyword arguments. Parameters ---------- jam : jams.JAMS A JAMS object Returns ------- jam : jams.JAMS The updated JAMS object Examples -------- >>> jam = jams.JAMS() >>> muda.jam_pack(jam, my_data=dict(foo=5, bar=None)) >>> jam.sandbox <Sandbox: muda> >>> jam.sandbox.muda <Sandbox: state, version, my_data, history> >>> jam.sandbox.muda.my_data {'foo': 5, 'bar': None} """ if not hasattr(jam.sandbox, "muda"): # If there's no mudabox, create one jam.sandbox.muda = jams.Sandbox( history=[], state=[], version=dict( muda=version, librosa=librosa.__version__, jams=jams.__version__, pysoundfile=psf.__version__, ), ) elif not isinstance(jam.sandbox.muda, jams.Sandbox): # If there is a muda entry, but it's not a sandbox, coerce it jam.sandbox.muda = jams.Sandbox(**jam.sandbox.muda) jam.sandbox.muda.update(**kwargs) return jam