Python imgaug.imresize_single_image() Examples

The following are 30 code examples of imgaug.imresize_single_image(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module imgaug , or try the search function .
Example #1
Source File: common.py    From cat-bbs with MIT License 6 votes vote down vote up
def draw_heatmap(img, heatmap, alpha=0.5):
    """Draw a heatmap overlay over an image."""
    assert len(heatmap.shape) == 2 or \
        (len(heatmap.shape) == 3 and heatmap.shape[2] == 1)
    assert img.dtype in [np.uint8, np.int32, np.int64]
    assert heatmap.dtype in [np.float32, np.float64]

    if img.shape[0:2] != heatmap.shape[0:2]:
        heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8)
        heatmap_rs = ia.imresize_single_image(
            heatmap_rs[..., np.newaxis],
            img.shape[0:2],
            interpolation="nearest"
        )
        heatmap = np.squeeze(heatmap_rs) / 255.0

    cmap = plt.get_cmap('jet')
    heatmap_cmapped = cmap(heatmap)
    heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2)
    heatmap_cmapped = heatmap_cmapped * 255
    mix = (1-alpha) * img + alpha * heatmap_cmapped
    mix = np.clip(mix, 0, 255).astype(np.uint8)
    return mix 
Example #2
Source File: augmentation.py    From open-solution-data-science-bowl-2018 with MIT License 6 votes vote down vote up
def _perspective_transform_augment_images(self, images, random_state, parents, hooks):
    result = images
    if not self.keep_size:
        result = list(result)

    matrices, max_heights, max_widths = self._create_matrices(
        [image.shape for image in images],
        random_state
    )

    for i, (M, max_height, max_width) in enumerate(zip(matrices, max_heights, max_widths)):
        warped = cv2.warpPerspective(images[i], M, (max_width, max_height))
        if warped.ndim == 2 and images[i].ndim == 3:
            warped = np.expand_dims(warped, 2)
        if self.keep_size:
            h, w = images[i].shape[0:2]
            warped = ia.imresize_single_image(warped, (h, w))

        result[i] = warped

    return result 
Example #3
Source File: check_background_augmentation.py    From ViolenceDetection with Apache License 2.0 6 votes vote down vote up
def load_images():
    batch_size = 4
    astronaut = data.astronaut()
    astronaut = ia.imresize_single_image(astronaut, (64, 64))
    kps = ia.KeypointsOnImage([ia.Keypoint(x=15, y=25)], shape=astronaut.shape)
    counter = 0
    for i in range(10):
        batch_images = []
        batch_kps = []
        for b in range(batch_size):
            astronaut_text = ia.draw_text(astronaut, x=0, y=0, text="%d" % (counter,), color=[0, 255, 0], size=16)
            batch_images.append(astronaut_text)
            batch_kps.append(kps)
            counter += 1
        batch = ia.Batch(
            images=np.array(batch_images, dtype=np.uint8),
            keypoints=batch_kps
        )
        yield batch 
Example #4
Source File: segmentation.py    From imgaug with MIT License 6 votes vote down vote up
def _augment_single_image(self, image, random_state):
        rss = random_state.duplicate(2)
        orig_shape = image.shape
        image = _ensure_image_max_size(image, self.max_size, self.interpolation)

        cell_coordinates = self.points_sampler.sample_points([image], rss[0])[0]
        p_replace = self.p_replace.draw_samples((len(cell_coordinates),),
                                                rss[1])
        replace_mask = (p_replace > 0.5)

        image_aug = segment_voronoi(image, cell_coordinates, replace_mask)

        if orig_shape != image_aug.shape:
            image_aug = ia.imresize_single_image(
                image_aug,
                orig_shape[0:2],
                interpolation=self.interpolation)

        return image_aug 
Example #5
Source File: pooling.py    From imgaug with MIT License 6 votes vote down vote up
def _augment_images_by_samples(self, images, samples):
        if not self.keep_size:
            images = list(images)

        kernel_sizes_h, kernel_sizes_w = samples

        gen = enumerate(zip(images, kernel_sizes_h, kernel_sizes_w))
        for i, (image, ksize_h, ksize_w) in gen:
            if ksize_h >= 2 or ksize_w >= 2:
                image_pooled = self._pool_image(
                    image, ksize_h, ksize_w)
                if self.keep_size:
                    image_pooled = ia.imresize_single_image(
                        image_pooled, image.shape[0:2])
                images[i] = image_pooled

        return images

    # Added in 0.4.0. 
Example #6
Source File: blend.py    From imgaug with MIT License 6 votes vote down vote up
def _binarize_mask(cls, mask, arr_height, arr_width):
        # Average over channels, resize to heatmap/segmap array size
        # (+clip for cubic interpolation). We can use none-NN interpolation
        # for segmaps here as this is just the mask and not the segmap
        # array.
        mask_3d = np.atleast_3d(mask)

        # masks with zero-sized axes crash in np.average() and cannot be
        # upscaled in imresize_single_image()
        if mask.size == 0:
            mask_rs = np.zeros((arr_height, arr_width),
                               dtype=np.float32)
        else:
            mask_avg = (
                np.average(mask_3d, axis=2) if mask_3d.shape[2] > 0 else 1.0)
            mask_rs = ia.imresize_single_image(mask_avg,
                                               (arr_height, arr_width))
        mask_arr = iadt.clip_(mask_rs, 0, 1.0)
        mask_arr_binarized = (mask_arr >= 0.5)
        return mask_arr_binarized

    # Added in 0.4.0. 
Example #7
Source File: annotate_street_boundaries.py    From self-driving-truck with MIT License 6 votes vote down vote up
def set_canvas_background(self, image):
        if self.background_label is None:
            # initialize background image label (first call)
            #img = self.current_state.screenshot_rs
            #bg_img_tk = numpy_to_tk_image(np.zeros(img.shape))
            img_heatmap = self._generate_heatmap()
            img_heatmap_rs = ia.imresize_single_image(img_heatmap, (img_heatmap.shape[0]*ZOOM_FACTOR, img_heatmap.shape[1]*ZOOM_FACTOR), interpolation="nearest")
            bg_img_tk = numpy_to_tk_image(img_heatmap_rs)
            self.background_label = Tkinter.Label(self.canvas, image=bg_img_tk)
            self.background_label.place(x=0, y=0, relwidth=1, relheight=1, anchor=Tkinter.NW)
            self.background_label.image = bg_img_tk

        #print("image size", image.shape)
        #print("image height, width", image.to_array().shape)
        image_rs = ia.imresize_single_image(image, (image.shape[0]*ZOOM_FACTOR, image.shape[1]*ZOOM_FACTOR), interpolation="nearest")
        image_tk = numpy_to_tk_image(image_rs)
        self.background_label.configure(image=image_tk)
        self.background_label.image = image_tk 
Example #8
Source File: annotate_attributes.py    From self-driving-truck with MIT License 6 votes vote down vote up
def set_canvas_background(self, image):
        if self.background_label is None:
            # initialize background image label (first call)
            #img = self.current_state.screenshot_rs
            #bg_img_tk = numpy_to_tk_image(np.zeros(img.shape))
            img_heatmap = self._generate_heatmap()
            img_heatmap_rs = ia.imresize_single_image(img_heatmap, (img_heatmap.shape[0]*self.zoom_factor, img_heatmap.shape[1]*self.zoom_factor), interpolation="nearest")
            bg_img_tk = numpy_to_tk_image(img_heatmap_rs)
            self.background_label = Tkinter.Label(self.canvas, image=bg_img_tk)
            self.background_label.place(x=0, y=0, relwidth=1, relheight=1, anchor=Tkinter.NW)
            self.background_label.image = bg_img_tk

        #print("image size", image.shape)
        #print("image height, width", image.to_array().shape)
        image_rs = ia.imresize_single_image(image, (image.shape[0]*self.zoom_factor, image.shape[1]*self.zoom_factor), interpolation="nearest")
        image_tk = numpy_to_tk_image(image_rs)
        self.background_label.configure(image=image_tk)
        self.background_label.image = image_tk 
Example #9
Source File: common.py    From self-driving-truck with MIT License 6 votes vote down vote up
def set_canvas_background(self, image):
        if self.background_label is None:
            # initialize background image label (first call)
            #img = self.current_state.screenshot_rs
            #bg_img_tk = numpy_to_tk_image(np.zeros(img.shape))
            img_heatmap = self._generate_heatmap()
            img_heatmap_rs = ia.imresize_single_image(img_heatmap, (img_heatmap.shape[0]*self.zoom_factor, img_heatmap.shape[1]*self.zoom_factor), interpolation="nearest")
            bg_img_tk = numpy_to_tk_image(img_heatmap_rs)
            self.background_label = Tkinter.Label(self.canvas, image=bg_img_tk)
            self.background_label.place(x=0, y=0, relwidth=1, relheight=1, anchor=Tkinter.NW)
            self.background_label.image = bg_img_tk

        #print("image size", image.shape)
        #print("image height, width", image.to_array().shape)
        image_rs = ia.imresize_single_image(image, (image.shape[0]*self.zoom_factor, image.shape[1]*self.zoom_factor), interpolation="nearest")
        image_tk = numpy_to_tk_image(image_rs)
        self.background_label.configure(image=image_tk)
        self.background_label.image = image_tk 
Example #10
Source File: util.py    From self-driving-truck with MIT License 6 votes vote down vote up
def draw_heatmap_overlay(img, heatmap, alpha=0.5):
    #assert img.shape[0:2] == heatmap.shape[0:2]
    assert len(heatmap.shape) == 2 or (heatmap.ndim == 3 and heatmap.shape[2] == 1)
    assert img.dtype in [np.uint8, np.int32, np.int64]
    assert heatmap.dtype in [np.float32, np.float64]

    if heatmap.ndim == 3 and heatmap.shape[2] == 1:
        heatmap = np.squeeze(heatmap)

    if img.shape[0:2] != heatmap.shape[0:2]:
        heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8)
        heatmap_rs = ia.imresize_single_image(heatmap_rs[..., np.newaxis], img.shape[0:2], interpolation="nearest")
        heatmap = np.squeeze(heatmap_rs) / 255.0

    cmap = plt.get_cmap('jet')
    heatmap_cmapped = cmap(heatmap)
    #img_heatmaps_cmapped = img_heatmaps_cmapped[:, :, 0:3]
    heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2)
    #heatmap_cmapped = np.clip(heatmap_cmapped * 255, 0, 255).astype(np.uint8)
    heatmap_cmapped = heatmap_cmapped * 255
    mix = (1-alpha) * img + alpha * heatmap_cmapped
    mix = np.clip(mix, 0, 255).astype(np.uint8)
    return mix 
Example #11
Source File: check_rain.py    From imgaug with MIT License 6 votes vote down vote up
def main():
    augs = [
        iaa.Rain(speed=(0.1, 0.3)),
        iaa.Rain(),
        iaa.Rain(drop_size=(0.1, 0.2))
    ]

    image = imageio.imread(
        ("https://upload.wikimedia.org/wikipedia/commons/8/89/"
         "Kukle%2CCzech_Republic..jpg"),
        format="jpg")

    for aug, size in zip(augs, [0.1, 0.2, 1.0]):
        image_rs = ia.imresize_single_image(image, size, "cubic")
        print(image_rs.shape)

        images_aug = aug.augment_images([image_rs] * 64)
        ia.imshow(ia.draw_grid(images_aug)) 
Example #12
Source File: check_background_augmentation.py    From imgaug with MIT License 6 votes vote down vote up
def load_images(n_batches=10, sleep=0.0):
    batch_size = 4
    astronaut = data.astronaut()
    astronaut = ia.imresize_single_image(astronaut, (64, 64))
    kps = ia.KeypointsOnImage([ia.Keypoint(x=15, y=25)], shape=astronaut.shape)
    counter = 0
    for i in range(n_batches):
        batch_images = []
        batch_kps = []
        for b in range(batch_size):
            astronaut_text = ia.draw_text(astronaut, x=0, y=0, text="%d" % (counter,), color=[0, 255, 0], size=16)
            batch_images.append(astronaut_text)
            batch_kps.append(kps)
            counter += 1
        batch = ia.Batch(
            images=np.array(batch_images, dtype=np.uint8),
            keypoints=batch_kps
        )
        yield batch
        if sleep > 0:
            time.sleep(sleep) 
Example #13
Source File: visualization.py    From self-driving-truck with MIT License 5 votes vote down vote up
def output_grid_to_image(output_grid, upscale_factor=(4, 4)):
    if output_grid is None:
        grid_vis = np.zeros((Config.MODEL_NB_REWARD_BINS, Config.MODEL_NB_FUTURE_BLOCKS), dtype=np.uint8)
    else:
        if output_grid.ndim == 3:
            output_grid = output_grid[0]
        grid_vis = (output_grid.transpose((1, 0)) * 255).astype(np.uint8)
    grid_vis = np.tile(grid_vis[:, :, np.newaxis], (1, 1, 3))
    if output_grid is None:
        grid_vis[::2, ::2, :] = [255, 0, 0]
    grid_vis = ia.imresize_single_image(grid_vis, (grid_vis.shape[0]*upscale_factor[0], grid_vis.shape[1]*upscale_factor[1]), interpolation="nearest")
    grid_vis = np.pad(grid_vis, ((1, 1), (1, 1), (0, 0)), mode="constant", constant_values=128)
    return grid_vis 
Example #14
Source File: visualization.py    From self-driving-truck with MIT License 5 votes vote down vote up
def downscale(im):
    return ia.imresize_single_image(im, (90, 160), interpolation="cubic") 
Example #15
Source File: preprocess.py    From deep-learning-for-document-dewarping with MIT License 5 votes vote down vote up
def resize_and_rotate(filename):
    img = cv2.imread(filename)[:, :, ::-1]
    print('image opened: ' + filename)
    img = rotate_image(img,90)
    img = ia.imresize_single_image(img, (1024, 2048))

    cv2.imwrite(filename, img)
    print('image rotated and resized saved as: ' + filename) 
Example #16
Source File: preprocess.py    From deep-learning-for-document-dewarping with MIT License 5 votes vote down vote up
def upsample(args):
    filename, root = args
    img = imageio.imread(os.path.join(root, filename))
    img = rotate_image(img,-90)
    img = ia.imresize_single_image(img, (4400, 3400))
    cv2.imwrite(os.path.join(root, filename)) 
Example #17
Source File: check_bb_augmentation.py    From ViolenceDetection with Apache License 2.0 5 votes vote down vote up
def main():
    image = data.astronaut()
    image = ia.imresize_single_image(image, (HEIGHT, WIDTH))

    kps = []
    for y in range(NB_ROWS):
        ycoord = BB_Y1 + int(y * (BB_Y2 - BB_Y1) / (NB_COLS - 1))
        for x in range(NB_COLS):
            xcoord = BB_X1 + int(x * (BB_X2 - BB_X1) / (NB_ROWS - 1))
            kp = (xcoord, ycoord)
            kps.append(kp)
    kps = set(kps)
    kps = [ia.Keypoint(x=xcoord, y=ycoord) for (xcoord, ycoord) in kps]
    kps = ia.KeypointsOnImage(kps, shape=image.shape)

    bb = ia.BoundingBox(x1=BB_X1, x2=BB_X2, y1=BB_Y1, y2=BB_Y2)
    bbs = ia.BoundingBoxesOnImage([bb], shape=image.shape)

    seq = iaa.Affine(rotate=45)
    seq_det = seq.to_deterministic()
    image_aug = seq_det.augment_image(image)
    kps_aug = seq_det.augment_keypoints([kps])[0]
    bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]

    image_before = np.copy(image)
    image_before = kps.draw_on_image(image_before)
    image_before = bbs.draw_on_image(image_before)

    image_after = np.copy(image_aug)
    image_after = kps_aug.draw_on_image(image_after)
    image_after = bbs_aug.draw_on_image(image_after)

    misc.imshow(np.hstack([image_before, image_after]))
    misc.imsave("bb_aug.jpg", np.hstack([image_before, image_after])) 
Example #18
Source File: visualization.py    From self-driving-truck with MIT License 5 votes vote down vote up
def draw_successor_dr_grid(outputs_dr_successors_preds, outputs_dr_successors_gt, upscale_factor=(4, 4)):
    T, S = outputs_dr_successors_preds.shape
    cols = []
    for t in range(T):
        col = (outputs_dr_successors_preds[t][np.newaxis, :].transpose((1, 0)) * 255).astype(np.uint8)
        col = np.tile(col[:, :, np.newaxis], (1, 1, 3))
        correct_bin_idx = np.argmax(outputs_dr_successors_gt[t])
        col[correct_bin_idx, 0, 2] = 255
        col = ia.imresize_single_image(col, (col.shape[0]*upscale_factor[0], col.shape[1]*upscale_factor[1]), interpolation="nearest")
        col = np.pad(col, ((1, 1), (1, 1), (0, 0)), mode="constant", constant_values=128)
        cols.append(col)
    return np.hstack(cols) 
Example #19
Source File: batching.py    From self-driving-truck with MIT License 5 votes vote down vote up
def downscale(im, h, w):
    """Downscale one or more images to size (h, w)."""
    if isinstance(im, list):
        return [downscale(i, h, w) for i in im]
    else:
        if im.ndim == 2:
            im = im[:, :, np.newaxis]
            im_rs = ia.imresize_single_image(im, (h, w), interpolation="cubic")
            return np.squeeze(im)
        else:
            return ia.imresize_single_image(im, (h, w), interpolation="cubic") 
Example #20
Source File: check_average_blur.py    From ViolenceDetection with Apache License 2.0 5 votes vote down vote up
def main():
    image = data.astronaut()
    image = ia.imresize_single_image(image, (64, 64))
    print("image shape:", image.shape)
    print("Press any key or wait %d ms to proceed to the next image." % (TIME_PER_STEP,))

    k = [
        1,
        2,
        4,
        8,
        16,
        (8, 8),
        (1, 8),
        ((1, 1), (8, 8)),
        ((1, 16), (1, 16)),
        ((1, 16), 1)
    ]

    cv2.namedWindow("aug", cv2.WINDOW_NORMAL)
    cv2.resizeWindow("aug", 64*NB_AUGS_PER_IMAGE, 64)
    #cv2.imshow("aug", image[..., ::-1])
    #cv2.waitKey(TIME_PER_STEP)

    for ki in k:
        aug = iaa.AverageBlur(k=ki)
        img_aug = [aug.augment_image(image) for _ in range(NB_AUGS_PER_IMAGE)]
        img_aug = np.hstack(img_aug)
        print("dtype", img_aug.dtype, "averages", np.average(img_aug, axis=tuple(range(0, img_aug.ndim-1))))
        #print("dtype", img_aug.dtype, "averages", img_aug.mean(axis=range(1, img_aug.ndim)))

        title = "k=%s" % (str(ki),)
        img_aug = ia.draw_text(img_aug, x=5, y=5, text=title)

        cv2.imshow("aug", img_aug[..., ::-1]) # here with rgb2bgr
        cv2.waitKey(TIME_PER_STEP) 
Example #21
Source File: models.py    From self-driving-truck with MIT License 5 votes vote down vote up
def downscale_prev(self, img):
        return ia.imresize_single_image(img, (train.MODEL_PREV_HEIGHT, train.MODEL_PREV_WIDTH), interpolation="cubic") 
Example #22
Source File: generate_documentation_images.py    From ViolenceDetection with Apache License 2.0 5 votes vote down vote up
def chapter_examples_bounding_boxes_projection():
    import imgaug as ia
    from imgaug import augmenters as iaa

    ia.seed(1)

    # Define image with two bounding boxes
    image = ia.quokka(size=(256, 256))
    bbs = ia.BoundingBoxesOnImage([
        ia.BoundingBox(x1=25, x2=75, y1=25, y2=75),
        ia.BoundingBox(x1=100, x2=150, y1=25, y2=75)
    ], shape=image.shape)

    # Rescale image and bounding boxes
    image_rescaled = ia.imresize_single_image(image, (512, 512))
    bbs_rescaled = bbs.on(image_rescaled)

    # Draw image before/after rescaling and with rescaled bounding boxes
    image_bbs = bbs.draw_on_image(image, thickness=2)
    image_rescaled_bbs = bbs_rescaled.draw_on_image(image_rescaled, thickness=2)

    # ------------

    save(
        "examples_bounding_boxes",
        "projection.jpg",
        grid([image_bbs, image_rescaled_bbs], cols=2, rows=1),
        quality=75
    ) 
Example #23
Source File: generate_example_images.py    From ViolenceDetection with Apache License 2.0 5 votes vote down vote up
def add_row(self, title, images, subtitles):
        assert len(images) == len(subtitles)
        images_rs = []
        for image in images:
            images_rs.append(ia.imresize_single_image(image, (self.image_height, self.image_width)))
        self.rows.append((title, images_rs, subtitles)) 
Example #24
Source File: test_readme_examples.py    From ViolenceDetection with Apache License 2.0 5 votes vote down vote up
def example_background_augment_batches():
    print("Example: Background Augmentation via augment_batches()")
    import imgaug as ia
    from imgaug import augmenters as iaa
    import numpy as np
    from skimage import data

    # Number of batches and batch size for this example
    nb_batches = 10
    batch_size = 32

    # Example augmentation sequence to run in the background
    augseq = iaa.Sequential([
        iaa.Fliplr(0.5),
        iaa.CoarseDropout(p=0.1, size_percent=0.1)
    ])

    # For simplicity, we use the same image here many times
    astronaut = data.astronaut()
    astronaut = ia.imresize_single_image(astronaut, (64, 64))

    # Make batches out of the example image (here: 10 batches, each 32 times
    # the example image)
    batches = []
    for _ in range(nb_batches):
        batches.append(
            np.array(
                [astronaut for _ in range(batch_size)],
                dtype=np.uint8
            )
        )

    # Show the augmented images.
    # Note that augment_batches() returns a generator.
    for images_aug in augseq.augment_batches(batches, background=True):
        misc.imshow(ia.draw_grid(images_aug, cols=8)) 
Example #25
Source File: test_segmaps.py    From imgaug with MIT License 5 votes vote down vote up
def test_use_size_arg_to_keep_at_same_size(self):
        # same example, keeps size at 3x3 via None and (int)3 or (float)1.0
        size_args = [
            None,
            (None, None),
            (3, None),
            (None, 3),
            (1.0, None),
            (None, 1.0)
        ]

        col0 = self.col(0)
        col1 = self.col(1)
        expected = np.uint8([
            [col0, col1, col1],
            [col0, col1, col1],
            [col0, col1, col1]
        ])
        expected = ia.imresize_single_image(expected,
                                            (3, 3),
                                            interpolation="nearest")

        for size_arg in size_args:
            with self.subTest(size=size_arg):
                observed = self.segmap.draw(size=size_arg)

                assert isinstance(observed, list)
                assert len(observed) == 1
                assert np.array_equal(observed[0], expected) 
Example #26
Source File: train.py    From self-driving-truck with MIT License 5 votes vote down vote up
def generate_debug_image(inputs, outputs_gt, outputs_pred):
    """Draw an image with current ground truth and predictions for debug purposes."""
    current_image = inputs.data[0].cpu().numpy()
    current_image = np.clip(current_image * 255, 0, 255).astype(np.uint8).transpose((1, 2, 0))
    current_image = ia.imresize_single_image(current_image, (32*4, 64*4))
    h, w = current_image.shape[0:2]
    outputs_gt = to_numpy(outputs_gt)[0]
    outputs_pred = to_numpy(outputs_pred)[0]

    binwidth = 6
    outputs_grid = np.zeros((20+2, outputs_gt.shape[0]*binwidth, 3), dtype=np.uint8)
    for angle_bin_idx in xrange(outputs_gt.shape[0]):
        val = outputs_pred[angle_bin_idx]
        x_start = angle_bin_idx*binwidth
        x_end = (angle_bin_idx+1)*binwidth
        fill_start = 1
        fill_end = 1 + int(20*val)
        #print(angle_bin_idx, x_start, x_end, fill_start, fill_end, outputs_grid.shape, outputs_grid[fill_start:fill_end, x_start+1:x_end].shape)
        if fill_start < fill_end:
            outputs_grid[fill_start:fill_end, x_start+1:x_end] = [255, 255, 255]

        bordercol = [128, 128, 128] if outputs_gt[angle_bin_idx] < 1 else [0, 0, 255]
        outputs_grid[0:22, x_start:x_start+1] = bordercol
        outputs_grid[0:22, x_end:x_end+1] = bordercol
        outputs_grid[0, x_start:x_end+1] = bordercol
        outputs_grid[21, x_start:x_end+1] = bordercol

    outputs_grid = outputs_grid[::-1, :, :]

    bin_gt = np.argmax(outputs_gt)
    bin_pred = np.argmax(outputs_pred)
    angles = [(binidx*ANGLE_BIN_SIZE) - 180 for binidx in [bin_gt, bin_pred]]

    #print(outputs_grid.shape)
    current_image = np.pad(current_image, ((0, 128), (0, 400), (0, 0)), mode="constant")
    current_image[h+4:h+4+22, 4:4+outputs_grid.shape[1], :] = outputs_grid
    current_image = util.draw_text(current_image, x=4, y=h+4+22+4, text="GT: %03.2fdeg\nPR: %03.2fdeg" % (angles[0], angles[1]), size=10)

    return current_image 
Example #27
Source File: train.py    From self-driving-truck with MIT License 5 votes vote down vote up
def downscale_image(steering_wheel_image):
    """Downscale an image to the model's input sizes (height, width)."""
    return ia.imresize_single_image(
        steering_wheel_image,
        (MODEL_HEIGHT, MODEL_WIDTH),
        interpolation="linear"
    ) 
Example #28
Source File: models.py    From self-driving-truck with MIT License 5 votes vote down vote up
def downscale(self, img):
        return ia.imresize_single_image(img, (train.MODEL_HEIGHT, train.MODEL_WIDTH), interpolation="cubic") 
Example #29
Source File: models.py    From self-driving-truck with MIT License 5 votes vote down vote up
def downscale_prev(self, img):
        return ia.imresize_single_image(img, (train.MODEL_PREV_HEIGHT, train.MODEL_PREV_WIDTH), interpolation="cubic") 
Example #30
Source File: check_snowflakes.py    From imgaug with MIT License 5 votes vote down vote up
def main():
    for size in [0.1, 0.2, 1.0]:
        image = imageio.imread("https://upload.wikimedia.org/wikipedia/commons/8/89/Kukle%2CCzech_Republic..jpg",
                               format="jpg")
        image = ia.imresize_single_image(image, size, "cubic")
        print(image.shape)
        augs = [
            ("iaa.Snowflakes()", iaa.Snowflakes())
        ]

        for descr, aug in augs:
            print(descr)
            images_aug = aug.augment_images([image] * 64)
            ia.imshow(ia.draw_grid(images_aug))