Python baselines.common.zipsame() Examples

The following are 16 code examples of baselines.common.zipsame(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module baselines.common , or try the search function .
Example #1
Source File: mpi_moments.py    From lirpg with MIT License 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #2
Source File: mpi_moments.py    From HardRLWithYoutube with MIT License 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #3
Source File: mpi_moments.py    From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #4
Source File: mpi_moments.py    From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #5
Source File: mpi_moments.py    From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #6
Source File: mpi_moments.py    From rl_graph_generation with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #7
Source File: mpi_moments.py    From learning2run with MIT License 6 votes vote down vote up
def test_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #8
Source File: mpi_moments.py    From DRL_DeliveryDuel with MIT License 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #9
Source File: mpi_moments.py    From ICML2019-TREX with MIT License 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #10
Source File: mpi_moments.py    From ICML2019-TREX with MIT License 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #11
Source File: mpi_moments.py    From MOREL with MIT License 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #12
Source File: mpi_moments.py    From sonic_contest with MIT License 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #13
Source File: mpi_moments.py    From self-imitation-learning with MIT License 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #14
Source File: mpi_moments.py    From baselines with MIT License 6 votes vote down vote up
def _helper_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #15
Source File: mpi_moments.py    From deeprl-baselines with MIT License 6 votes vote down vote up
def test_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!") 
Example #16
Source File: mpi_moments.py    From BackpropThroughTheVoidRL with MIT License 6 votes vote down vote up
def test_runningmeanstd():
    comm = MPI.COMM_WORLD
    np.random.seed(0)
    for (triple,axis) in [
        ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0),
        ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0),
        ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1),
        ]:


        x = np.concatenate(triple, axis=axis)
        ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]]


        ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis)

        for (a1,a2) in zipsame(ms1, ms2):
            print(a1, a2)
            assert np.allclose(a1, a2)
            print("ok!")