Python baselines.common.zipsame() Examples
The following are 16
code examples of baselines.common.zipsame().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
baselines.common
, or try the search function
.
Example #1
Source File: mpi_moments.py From lirpg with MIT License | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #2
Source File: mpi_moments.py From HardRLWithYoutube with MIT License | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #3
Source File: mpi_moments.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #4
Source File: mpi_moments.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #5
Source File: mpi_moments.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #6
Source File: mpi_moments.py From rl_graph_generation with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #7
Source File: mpi_moments.py From learning2run with MIT License | 6 votes |
def test_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #8
Source File: mpi_moments.py From DRL_DeliveryDuel with MIT License | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #9
Source File: mpi_moments.py From ICML2019-TREX with MIT License | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #10
Source File: mpi_moments.py From ICML2019-TREX with MIT License | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #11
Source File: mpi_moments.py From MOREL with MIT License | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #12
Source File: mpi_moments.py From sonic_contest with MIT License | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #13
Source File: mpi_moments.py From self-imitation-learning with MIT License | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #14
Source File: mpi_moments.py From baselines with MIT License | 6 votes |
def _helper_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #15
Source File: mpi_moments.py From deeprl-baselines with MIT License | 6 votes |
def test_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")
Example #16
Source File: mpi_moments.py From BackpropThroughTheVoidRL with MIT License | 6 votes |
def test_runningmeanstd(): comm = MPI.COMM_WORLD np.random.seed(0) for (triple,axis) in [ ((np.random.randn(3), np.random.randn(4), np.random.randn(5)),0), ((np.random.randn(3,2), np.random.randn(4,2), np.random.randn(5,2)),0), ((np.random.randn(2,3), np.random.randn(2,4), np.random.randn(2,4)),1), ]: x = np.concatenate(triple, axis=axis) ms1 = [x.mean(axis=axis), x.std(axis=axis), x.shape[axis]] ms2 = mpi_moments(triple[comm.Get_rank()],axis=axis) for (a1,a2) in zipsame(ms1, ms2): print(a1, a2) assert np.allclose(a1, a2) print("ok!")