Python baselines.common.explained_variance() Examples
The following are 26
code examples of baselines.common.explained_variance().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
baselines.common
, or try the search function
.
Example #1
Source File: value_functions.py From lirpg with MIT License | 5 votes |
def fit(self, paths, targvals): X = np.concatenate([self._preproc(p) for p in paths]) y = np.concatenate(targvals) logger.record_tabular("EVBefore", common.explained_variance(self._predict(X), y)) for _ in range(25): self.do_update(X, y) logger.record_tabular("EVAfter", common.explained_variance(self._predict(X), y))
Example #2
Source File: value_functions.py From BackpropThroughTheVoidRL with MIT License | 5 votes |
def fit(self, paths, targvals): X = np.concatenate([self._preproc(p) for p in paths]) y = np.concatenate(targvals) logger.record_tabular("EVBefore", common.explained_variance(self._predict(X), y)) for _ in range(25): self.do_update(X, y) logger.record_tabular("EVAfter", common.explained_variance(self._predict(X), y))
Example #3
Source File: value_functions.py From deeprl-baselines with MIT License | 5 votes |
def fit(self, paths, targvals): X = np.concatenate([self._preproc(p) for p in paths]) y = np.concatenate(targvals) logger.record_tabular("EVBefore", common.explained_variance(self._predict(X), y)) for _ in range(25): self.do_update(X, y) logger.record_tabular("EVAfter", common.explained_variance(self._predict(X), y))
Example #4
Source File: a2c.py From deeprl-baselines with MIT License | 5 votes |
def learn(policy, env, seed, nsteps=5, nstack=4, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100): tf.reset_default_graph() set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space num_procs = len(env.remotes) # HACK model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, nstack=nstack, num_procs=num_procs, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule) runner = Runner(env, model, nsteps=nsteps, nstack=nstack, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() env.close()
Example #5
Source File: value_functions.py From self-imitation-learning with MIT License | 5 votes |
def fit(self, paths, targvals): X = np.concatenate([self._preproc(p) for p in paths]) y = np.concatenate(targvals) logger.record_tabular("EVBefore", common.explained_variance(self._predict(X), y)) for _ in range(25): self.do_update(X, y) logger.record_tabular("EVAfter", common.explained_variance(self._predict(X), y))
Example #6
Source File: a2c_sil.py From self-imitation-learning with MIT License | 5 votes |
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100, sil_update=4, sil_beta=0.0): set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule, sil_update=sil_update, sil_beta=sil_beta) runner = Runner(env, model, nsteps=nsteps, gamma=gamma) episode_stats = EpisodeStats(nsteps, nenvs) nbatch = nenvs*nsteps tstart = time.time() for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values, raw_rewards = runner.run() episode_stats.feed(raw_rewards, masks) policy_loss, value_loss, policy_entropy, v_avg = model.train(obs, states, rewards, masks, actions, values) sil_loss, sil_adv, sil_samples, sil_nlogp = model.sil_train() nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.record_tabular("episode_reward", episode_stats.mean_reward()) logger.record_tabular("best_episode_reward", float(model.sil.get_best_reward())) if sil_update > 0: logger.record_tabular("sil_num_episodes", float(model.sil.num_episodes())) logger.record_tabular("sil_valid_samples", float(sil_samples)) logger.record_tabular("sil_steps", float(model.sil.num_steps())) logger.dump_tabular() env.close() return model
Example #7
Source File: a2c.py From self-imitation-learning with MIT License | 5 votes |
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100): set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule) runner = Runner(env, model, nsteps=nsteps, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() env.close() return model
Example #8
Source File: value_functions.py From sonic_contest with MIT License | 5 votes |
def fit(self, paths, targvals): X = np.concatenate([self._preproc(p) for p in paths]) y = np.concatenate(targvals) logger.record_tabular("EVBefore", common.explained_variance(self._predict(X), y)) for _ in range(25): self.do_update(X, y) logger.record_tabular("EVAfter", common.explained_variance(self._predict(X), y))
Example #9
Source File: a2c.py From sonic_contest with MIT License | 5 votes |
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100): tf.reset_default_graph() set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule) runner = Runner(env, model, nsteps=nsteps, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() env.close()
Example #10
Source File: value_functions.py From DRL_DeliveryDuel with MIT License | 5 votes |
def fit(self, paths, targvals): X = np.concatenate([self._preproc(p) for p in paths]) y = np.concatenate(targvals) logger.record_tabular("EVBefore", common.explained_variance(self._predict(X), y)) for _ in range(25): self.do_update(X, y) logger.record_tabular("EVAfter", common.explained_variance(self._predict(X), y))
Example #11
Source File: value_functions.py From HardRLWithYoutube with MIT License | 5 votes |
def fit(self, paths, targvals): X = np.concatenate([self._preproc(p) for p in paths]) y = np.concatenate(targvals) logger.record_tabular("EVBefore", common.explained_variance(self._predict(X), y)) for _ in range(25): self.do_update(X, y) logger.record_tabular("EVAfter", common.explained_variance(self._predict(X), y))
Example #12
Source File: value_functions.py From rl_graph_generation with BSD 3-Clause "New" or "Revised" License | 5 votes |
def fit(self, paths, targvals): X = np.concatenate([self._preproc(p) for p in paths]) y = np.concatenate(targvals) logger.record_tabular("EVBefore", common.explained_variance(self._predict(X), y)) for _ in range(25): self.do_update(X, y) logger.record_tabular("EVAfter", common.explained_variance(self._predict(X), y))
Example #13
Source File: a2c.py From rl_graph_generation with BSD 3-Clause "New" or "Revised" License | 5 votes |
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100): tf.reset_default_graph() set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule) runner = Runner(env, model, nsteps=nsteps, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() env.close()
Example #14
Source File: acktr_disc.py From BackpropThroughTheVoidRL with MIT License | 4 votes |
def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20, nstack=4, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5, kfac_clip=0.001, save_interval=None, lrschedule='linear'): tf.reset_default_graph() set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps =nsteps, nstack=nstack, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef= vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip, lrschedule=lrschedule) if save_interval and logger.get_dir(): import cloudpickle with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh: fh.write(cloudpickle.dumps(make_model)) model = make_model() runner = Runner(env, model, nsteps=nsteps, nstack=nstack, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() coord = tf.train.Coordinator() enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True) for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) model.old_obs = obs nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("policy_loss", float(policy_loss)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir(): savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update) print('Saving to', savepath) model.save(savepath) coord.request_stop() coord.join(enqueue_threads) env.close()
Example #15
Source File: a2c.py From lirpg with MIT License | 4 votes |
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), v_mix_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr_alpha=7e-4, lr_beta=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100, v_ex_coef=1.0, r_ex_coef=0.0, r_in_coef=1.0): tf.reset_default_graph() set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, v_ex_coef=v_ex_coef, max_grad_norm=max_grad_norm, lr_alpha=lr_alpha, lr_beta=lr_beta, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule, v_mix_coef=v_mix_coef, r_ex_coef=r_ex_coef, r_in_coef=r_in_coef) runner = Runner(env, model, nsteps=nsteps, gamma=gamma, r_ex_coef=r_ex_coef, r_in_coef=r_in_coef) nbatch = nenvs*nsteps tstart = time.time() epinfobuf = deque(maxlen=100) eprexbuf = deque(maxlen=100) eprinbuf = deque(maxlen=100) eplenbuf = deque(maxlen=100) for update in range(1, total_timesteps//nbatch+1): obs, ac, policy_states, r_in, r_ex, ret_ex, ret_mix, \ v_ex, v_mix, last_v_ex, last_v_mix, masks, dones, \ epinfo, ep_r_ex, ep_r_in, ep_len = runner.run() dis_v_mix_last = np.zeros([nbatch], np.float32) coef_mat = np.zeros([nbatch, nbatch], np.float32) for i in range(nbatch): dis_v_mix_last[i] = gamma ** (nsteps - i % nsteps) * last_v_mix[i // nsteps] coef = 1.0 for j in range(i, nbatch): if j > i and j % nsteps == 0: break coef_mat[i][j] = coef coef *= gamma if dones[j]: dis_v_mix_last[i] = 0 break entropy = model.train(obs, policy_states[0], masks, ac, r_ex, ret_ex, v_ex, v_mix, dis_v_mix_last, coef_mat) nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) epinfobuf.extend(epinfo) eprexbuf.extend(ep_r_ex) eprinbuf.extend(ep_r_in) eplenbuf.extend(ep_len) if update % log_interval == 0 or update == 1: logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("entropy", float(entropy)) v_ex_ev = explained_variance(v_ex, ret_ex) logger.record_tabular("v_ex_ev", float(v_ex_ev)) v_mix_ev = explained_variance(v_mix, ret_mix) logger.record_tabular("v_mix_ev", float(v_mix_ev)) logger.record_tabular("gamescoremean", safemean([epinfo['r'] for epinfo in epinfobuf])) logger.record_tabular("gamelenmean", safemean([epinfo['l'] for epinfo in epinfobuf])) logger.dump_tabular() env.close()
Example #16
Source File: a2c.py From BackpropThroughTheVoidRL with MIT License | 4 votes |
def learn(policy, env, seed, nsteps=5, nstack=1, total_timesteps=int(80e6), ent_coef=0.01, max_grad_norm=0.5, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100, logdir=None, bootstrap=False, args=None): tf.reset_default_graph() set_global_seeds(seed) lr = args.lr vf_coef = args.vf_coef nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space num_procs = len(env.remotes) # HACK model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, nstack=nstack, num_procs=num_procs, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule, logdir=logdir) runner = RolloutRunner(env, model, nsteps=nsteps, nstack=nstack, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() for update in range(1, total_timesteps//nbatch+1): if True: #update % log_interval == 0 or update == 1: obs, states, rewards, masks, actions, values, u1, u2, END = runner.run() if END: break policy_loss, value_loss, policy_entropy, lv = model.train(obs, states, rewards, masks, u1, u2, values, summary=False) nseconds = time.time() - tstart fps = int((update * nbatch) / nseconds) ev = explained_variance(values, rewards) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.record_tabular("log_variance", lv) logger.dump_tabular() else: obs, states, rewards, masks, actions, values, u1, u2, END = runner.run() if END: break policy_loss, value_loss, policy_entropy, lv = model.train(obs, states, rewards, masks, u1, u2, values) nseconds = time.time() - tstart fps = int((update * nbatch) / nseconds) env.close()
Example #17
Source File: acktr_disc.py From deeprl-baselines with MIT License | 4 votes |
def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20, nstack=4, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5, kfac_clip=0.001, save_interval=None, lrschedule='linear'): tf.reset_default_graph() set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps =nsteps, nstack=nstack, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef= vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip, lrschedule=lrschedule) if save_interval and logger.get_dir(): import cloudpickle with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh: fh.write(cloudpickle.dumps(make_model)) model = make_model() runner = Runner(env, model, nsteps=nsteps, nstack=nstack, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() coord = tf.train.Coordinator() enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True) for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) model.old_obs = obs nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("policy_loss", float(policy_loss)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir(): savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update) print('Saving to', savepath) model.save(savepath) coord.request_stop() coord.join(enqueue_threads) env.close()
Example #18
Source File: acktr_disc.py From lirpg with MIT License | 4 votes |
def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5, kfac_clip=0.001, save_interval=None, lrschedule='linear'): tf.reset_default_graph() set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef= vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip, lrschedule=lrschedule) if save_interval and logger.get_dir(): import cloudpickle with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh: fh.write(cloudpickle.dumps(make_model)) model = make_model() runner = Runner(env, model, nsteps=nsteps, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() coord = tf.train.Coordinator() enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True) for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) model.old_obs = obs nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("policy_loss", float(policy_loss)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir(): savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update) print('Saving to', savepath) model.save(savepath) coord.request_stop() coord.join(enqueue_threads) env.close()
Example #19
Source File: acktr_disc.py From self-imitation-learning with MIT License | 4 votes |
def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5, kfac_clip=0.001, save_interval=None, lrschedule='linear'): tf.reset_default_graph() set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef= vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip, lrschedule=lrschedule) if save_interval and logger.get_dir(): import cloudpickle with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh: fh.write(cloudpickle.dumps(make_model)) model = make_model() runner = Runner(env, model, nsteps=nsteps, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() coord = tf.train.Coordinator() enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True) for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) model.old_obs = obs nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("policy_loss", float(policy_loss)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir(): savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update) print('Saving to', savepath) model.save(savepath) coord.request_stop() coord.join(enqueue_threads) env.close()
Example #20
Source File: acktr_disc.py From HardRLWithYoutube with MIT License | 4 votes |
def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5, kfac_clip=0.001, save_interval=None, lrschedule='linear', load_path=None, **network_kwargs): set_global_seeds(seed) if network == 'cnn': network_kwargs['one_dim_bias'] = True policy = build_policy(env, network, **network_kwargs) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef= vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip, lrschedule=lrschedule) if save_interval and logger.get_dir(): import cloudpickle with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh: fh.write(cloudpickle.dumps(make_model)) model = make_model() if load_path is not None: model.load(load_path) runner = Runner(env, model, nsteps=nsteps, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() coord = tf.train.Coordinator() enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True) for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) model.old_obs = obs nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("policy_loss", float(policy_loss)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir(): savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update) print('Saving to', savepath) model.save(savepath) coord.request_stop() coord.join(enqueue_threads) env.close() return model
Example #21
Source File: acktr_disc.py From sonic_contest with MIT License | 4 votes |
def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5, kfac_clip=0.001, save_interval=None, lrschedule='linear'): tf.reset_default_graph() set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef= vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip, lrschedule=lrschedule) if save_interval and logger.get_dir(): import cloudpickle with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh: fh.write(cloudpickle.dumps(make_model)) model = make_model() runner = Runner(env, model, nsteps=nsteps, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() coord = tf.train.Coordinator() enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True) for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) model.old_obs = obs nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("policy_loss", float(policy_loss)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir(): savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update) print('Saving to', savepath) model.save(savepath) coord.request_stop() coord.join(enqueue_threads) env.close()
Example #22
Source File: acktr_disc.py From rl_graph_generation with BSD 3-Clause "New" or "Revised" License | 4 votes |
def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5, kfac_clip=0.001, save_interval=None, lrschedule='linear'): tf.reset_default_graph() set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef= vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip, lrschedule=lrschedule) if save_interval and logger.get_dir(): import cloudpickle with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh: fh.write(cloudpickle.dumps(make_model)) model = make_model() runner = Runner(env, model, nsteps=nsteps, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() coord = tf.train.Coordinator() enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True) for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) model.old_obs = obs nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("policy_loss", float(policy_loss)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir(): savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update) print('Saving to', savepath) model.save(savepath) coord.request_stop() coord.join(enqueue_threads) env.close()
Example #23
Source File: a2c.py From DRL_DeliveryDuel with MIT License | 4 votes |
def learn(policy, env, seed, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100, callback=None): tf.reset_default_graph() set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space model = Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nenvs=nenvs, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule) runner = Runner(env, model, nsteps=nsteps, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() sps = 0 ev = 0 policy_entropy = 0 policy_loss = 0 value_loss = 0 true_rewards = [] # the undiscounted / bootstrapped rewards, i.e. the rewards as they were returns by the environment try: for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values, ret_rewards = runner.run() true_rewards.extend(ret_rewards) policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) nseconds = time.time()-tstart sps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("sps", sps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() if callback is not None: if callback(locals(), globals()): break true_rewards = [] except Exception as e: print("Exception encountered during training: " + str(e)) except KeyboardInterrupt: print("Aborted training.") return model # return model, so we can save it
Example #24
Source File: acktr.py From ICML2019-TREX with MIT License | 4 votes |
def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5, kfac_clip=0.001, save_interval=None, lrschedule='linear', load_path=None, is_async=True, **network_kwargs): set_global_seeds(seed) if network == 'cnn': network_kwargs['one_dim_bias'] = True policy = build_policy(env, network, **network_kwargs) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef= vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip, lrschedule=lrschedule, is_async=is_async) if save_interval and logger.get_dir(): import cloudpickle with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh: fh.write(cloudpickle.dumps(make_model)) model = make_model() if load_path is not None: model.load(load_path) runner = Runner(env, model, nsteps=nsteps, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() coord = tf.train.Coordinator() if is_async: enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True) else: enqueue_threads = [] for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) model.old_obs = obs nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("policy_loss", float(policy_loss)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir(): savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update) print('Saving to', savepath) model.save(savepath) coord.request_stop() coord.join(enqueue_threads) return model
Example #25
Source File: acktr.py From ICML2019-TREX with MIT License | 4 votes |
def learn(network, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5, kfac_clip=0.001, save_interval=None, lrschedule='linear', load_path=None, is_async=True, **network_kwargs): set_global_seeds(seed) if network == 'cnn': network_kwargs['one_dim_bias'] = True policy = build_policy(env, network, **network_kwargs) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef= vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip, lrschedule=lrschedule, is_async=is_async) if save_interval and logger.get_dir(): import cloudpickle with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh: fh.write(cloudpickle.dumps(make_model)) model = make_model() if load_path is not None: model.load(load_path) runner = Runner(env, model, nsteps=nsteps, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() coord = tf.train.Coordinator() if is_async: enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True) else: enqueue_threads = [] for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) model.old_obs = obs nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("policy_loss", float(policy_loss)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir(): savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update) print('Saving to', savepath) model.save(savepath) coord.request_stop() coord.join(enqueue_threads) return model
Example #26
Source File: acktr_disc.py From DRL_DeliveryDuel with MIT License | 4 votes |
def learn(policy, env, seed, total_timesteps=int(40e6), gamma=0.99, log_interval=1, nprocs=32, nsteps=20, ent_coef=0.01, vf_coef=0.5, vf_fisher_coef=1.0, lr=0.25, max_grad_norm=0.5, kfac_clip=0.001, save_interval=None, lrschedule='linear'): tf.reset_default_graph() set_global_seeds(seed) nenvs = env.num_envs ob_space = env.observation_space ac_space = env.action_space make_model = lambda : Model(policy, ob_space, ac_space, nenvs, total_timesteps, nprocs=nprocs, nsteps =nsteps, ent_coef=ent_coef, vf_coef=vf_coef, vf_fisher_coef= vf_fisher_coef, lr=lr, max_grad_norm=max_grad_norm, kfac_clip=kfac_clip, lrschedule=lrschedule) if save_interval and logger.get_dir(): import cloudpickle with open(osp.join(logger.get_dir(), 'make_model.pkl'), 'wb') as fh: fh.write(cloudpickle.dumps(make_model)) model = make_model() runner = Runner(env, model, nsteps=nsteps, gamma=gamma) nbatch = nenvs*nsteps tstart = time.time() coord = tf.train.Coordinator() enqueue_threads = model.q_runner.create_threads(model.sess, coord=coord, start=True) for update in range(1, total_timesteps//nbatch+1): obs, states, rewards, masks, actions, values = runner.run() policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) model.old_obs = obs nseconds = time.time()-tstart fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("policy_loss", float(policy_loss)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.dump_tabular() if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir(): savepath = osp.join(logger.get_dir(), 'checkpoint%.5i'%update) print('Saving to', savepath) model.save(savepath) coord.request_stop() coord.join(enqueue_threads) env.close()