Python sklearn.linear_model.RidgeClassifierCV() Examples

The following are 9 code examples of sklearn.linear_model.RidgeClassifierCV(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module sklearn.linear_model , or try the search function .
Example #1
Source File: TermDocMatrix.py    From scattertext with Apache License 2.0 6 votes vote down vote up
def get_logistic_regression_coefs_l2(self, category,
                                         clf=RidgeClassifierCV()):
        ''' Computes l2-penalized logistic regression score.
        Parameters
        ----------
        category : str
            category name to score

        category : str
            category name to score
        Returns
        -------
            (coefficient array, accuracy, majority class baseline accuracy)
        '''
        try:
            from sklearn.cross_validation import cross_val_predict
        except:
            from sklearn.model_selection import cross_val_predict
        y = self._get_mask_from_category(category)
        X = TfidfTransformer().fit_transform(self._X)
        clf.fit(X, y)
        y_hat = cross_val_predict(clf, X, y)
        acc, baseline = self._get_accuracy_and_baseline_accuracy(y, y_hat)
        return clf.coef_[0], acc, baseline 
Example #2
Source File: test_sklearn_glm_classifier_converter.py    From sklearn-onnx with MIT License 6 votes vote down vote up
def test_model_ridge_classifier_cv_binary(self):
        model, X = fit_classification_model(
            linear_model.RidgeClassifierCV(), 2)
        model_onnx = convert_sklearn(
            model,
            "binary ridge classifier cv",
            [("input", FloatTensorType([None, X.shape[1]]))],
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnRidgeClassifierCVBin",
            allow_failure="StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
Example #3
Source File: test_sklearn_glm_classifier_converter.py    From sklearn-onnx with MIT License 6 votes vote down vote up
def test_model_ridge_classifier_cv_int(self):
        model, X = fit_classification_model(
            linear_model.RidgeClassifierCV(), 2, is_int=True)
        model_onnx = convert_sklearn(
            model,
            "binary ridge classifier cv",
            [("input", Int64TensorType([None, X.shape[1]]))],
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnRidgeClassifierCVInt",
            allow_failure="StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
Example #4
Source File: test_sklearn_glm_classifier_converter.py    From sklearn-onnx with MIT License 6 votes vote down vote up
def test_model_ridge_classifier_cv_bool(self):
        model, X = fit_classification_model(
            linear_model.RidgeClassifierCV(), 2, is_bool=True)
        model_onnx = convert_sklearn(
            model,
            "binary ridge classifier cv",
            [("input", BooleanTensorType([None, X.shape[1]]))],
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnRidgeClassifierCVBool",
            allow_failure="StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
Example #5
Source File: test_sklearn_glm_classifier_converter.py    From sklearn-onnx with MIT License 6 votes vote down vote up
def test_model_ridge_classifier_cv_multi_class(self):
        model, X = fit_classification_model(
            linear_model.RidgeClassifierCV(), 5)
        model_onnx = convert_sklearn(
            model,
            "multi-class ridge classifier cv",
            [("input", FloatTensorType([None, X.shape[1]]))],
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnRidgeClassifierCVMulti",
            allow_failure="StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
Example #6
Source File: test_sklearn_glm_classifier_converter.py    From sklearn-onnx with MIT License 6 votes vote down vote up
def test_model_ridge_classifier_cv_multilabel(self):
        model, X_test = fit_multilabel_classification_model(
            linear_model.RidgeClassifierCV(random_state=42))
        model_onnx = convert_sklearn(
            model,
            "scikit-learn RidgeClassifierCV",
            [("input", FloatTensorType([None, X_test.shape[1]]))],
        )
        self.assertTrue(model_onnx is not None)
        dump_data_and_model(
            X_test,
            model,
            model_onnx,
            basename="SklearnRidgeClassifierCVMultiLabel",
            allow_failure="StrictVersion("
            "onnxruntime.__version__)<= StrictVersion('0.2.1')",
        ) 
Example #7
Source File: test_Rocket.py    From sktime with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_rocket_on_gunpoint():
    # load training data
    X_training, Y_training = load_gunpoint(split="train", return_X_y=True)

    # 'fit' ROCKET -> infer data dimensions, generate random kernels
    ROCKET = Rocket(num_kernels=10_000)
    ROCKET.fit(X_training)

    # transform training data
    X_training_transform = ROCKET.transform(X_training)

    # test shape of transformed training data -> (number of training
    # examples, num_kernels * 2)
    np.testing.assert_equal(X_training_transform.shape,
                            (len(X_training), 20_000))

    # fit classifier
    classifier = RidgeClassifierCV(alphas=np.logspace(-3, 3, 10),
                                   normalize=True)
    classifier.fit(X_training_transform, Y_training)

    # load test data
    X_test, Y_test = load_gunpoint(split="test", return_X_y=True)

    # transform test data
    X_test_transform = ROCKET.transform(X_test)

    # test shape of transformed test data -> (number of test examples,
    # num_kernels * 2)
    np.testing.assert_equal(X_test_transform.shape, (len(X_test), 20_000))

    # predict (alternatively: 'classifier.score(X_test_transform, Y_test)')
    predictions = classifier.predict(X_test_transform)
    accuracy = accuracy_score(predictions, Y_test)

    # test predictions (on Gunpoint, should be 100% accurate)
    assert accuracy == 1.0 
Example #8
Source File: test_linear_model.py    From pandas-ml with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression)
        self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge)
        self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet)
        self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV)

        self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor)

        self.assertIs(df.linear_model.Lars, lm.Lars)
        self.assertIs(df.linear_model.LarsCV, lm.LarsCV)
        self.assertIs(df.linear_model.Lasso, lm.Lasso)
        self.assertIs(df.linear_model.LassoCV, lm.LassoCV)
        self.assertIs(df.linear_model.LassoLars, lm.LassoLars)
        self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV)
        self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC)

        self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression)
        self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression)
        self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV)
        self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso)
        self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet)
        self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV)
        self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV)

        self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit)
        self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV)
        self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier)
        self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor)

        self.assertIs(df.linear_model.Perceptron, lm.Perceptron)
        self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso)
        self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression)
        self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor)
        self.assertIs(df.linear_model.Ridge, lm.Ridge)
        self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier)
        self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV)
        self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV)
        self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier)
        self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor)
        self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor) 
Example #9
Source File: reproduce_experiments_bakeoff.py    From rocket with GNU General Public License v3.0 4 votes vote down vote up
def run(training_data, test_data, num_runs = 10, num_kernels = 10_000):

    results = np.zeros(num_runs)
    timings = np.zeros([4, num_runs]) # training transform, test transform, training, test

    Y_training, X_training = training_data[:, 0].astype(np.int), training_data[:, 1:]
    Y_test, X_test = test_data[:, 0].astype(np.int), test_data[:, 1:]

    for i in range(num_runs):

        input_length = X_training.shape[1]
        kernels = generate_kernels(input_length, num_kernels)

        # -- transform training ------------------------------------------------

        time_a = time.perf_counter()
        X_training_transform = apply_kernels(X_training, kernels)
        time_b = time.perf_counter()
        timings[0, i] = time_b - time_a

        # -- transform test ----------------------------------------------------

        time_a = time.perf_counter()
        X_test_transform = apply_kernels(X_test, kernels)
        time_b = time.perf_counter()
        timings[1, i] = time_b - time_a

        # -- training ----------------------------------------------------------

        time_a = time.perf_counter()
        classifier = RidgeClassifierCV(alphas = 10 ** np.linspace(-3, 3, 10), normalize = True)
        classifier.fit(X_training_transform, Y_training)
        time_b = time.perf_counter()
        timings[2, i] = time_b - time_a

        # -- test --------------------------------------------------------------

        time_a = time.perf_counter()
        results[i] = classifier.score(X_test_transform, Y_test)
        time_b = time.perf_counter()
        timings[3, i] = time_b - time_a

    return results, timings

# == run through the bake off datasets =========================================