Python xgboost.__version__() Examples
The following are 4
code examples of xgboost.__version__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
xgboost
, or try the search function
.
Example #1
Source File: utils.py From onnxconverter-common with MIT License | 6 votes |
def xgboost_installed(): """ Checks that *xgboost* is available. """ try: import xgboost # noqa F401 except ImportError: return False from xgboost.core import _LIB try: _LIB.XGBoosterDumpModelEx except AttributeError: # The version is not recent enough even though it is version 0.6. # You need to install xgboost from github and not from pypi. return False from xgboost import __version__ vers = LooseVersion(__version__) allowed = LooseVersion('0.7') if vers < allowed: warnings.warn('The converter works for xgboost >= 0.7. Earlier versions might not.') return True
Example #2
Source File: model_wrapper.py From AMPL with MIT License | 5 votes |
def create_model_wrapper(params, featurizer, ds_client=None): """Factory function for creating Model objects of the correct subclass for params.model_type. Args: params (Namespace) : Parameters passed to the model pipeline featurizer (Featurization): Object managing the featurization of compounds ds_client (DatastoreClient): Interface to the file datastore Returns: model (pipeline.Model): Wrapper for DeepChem, sklearn or other model. Raises: ValueError: Only params.model_type = 'NN', 'RF' or 'xgboost' is supported. """ if params.model_type == 'NN': return DCNNModelWrapper(params, featurizer, ds_client) elif params.model_type == 'RF': return DCRFModelWrapper(params, featurizer, ds_client) elif params.model_type == 'xgboost': if not xgboost_supported: raise Exception("Unable to import xgboost. \ xgboost package needs to be installed to use xgboost model. \ Installatin: \ from pip: pip3 install xgboost.\ livermore compute (lc): /usr/mic/bio/anaconda3/bin/pip install xgboost --user \ twintron-blue (TTB): /opt/conda/bin/pip install xgboost --user/ \ " ) elif float(xgb.__version__) < 0.9: raise Exception(f"xgboost required to be >= 0.9 for GPU support. \ current version = {float(xgb.__version__)} \ installatin: \ from pip: pip3 install --upgrade xgboost \ livermore compute (lc): /usr/mic/bio/anaconda3/bin/pip install --upgrade xgboost --user \ twintron-blue (TTB): /opt/conda/bin/pip install --upgrade xgboost --user/ " ) else: return DCxgboostModelWrapper(params, featurizer, ds_client) else: raise ValueError("Unknown model_type %s" % params.model_type) # ****************************************************************************************
Example #3
Source File: xgboost.py From mljar-supervised with MIT License | 5 votes |
def __init__(self, params): super(XgbAlgorithm, self).__init__(params) self.library_version = xgb.__version__ self.explain_level = params.get("explain_level", 0) self.boosting_rounds = additional.get("max_rounds", 10000) self.max_iters = 1 self.early_stopping_rounds = additional.get("early_stopping_rounds", 50) self.learner_params = { "tree_method": "hist", "booster": "gbtree", "objective": self.params.get("objective"), "eval_metric": self.params.get("eval_metric"), "eta": self.params.get("eta", 0.01), "max_depth": self.params.get("max_depth", 1), "min_child_weight": self.params.get("min_child_weight", 1), "subsample": self.params.get("subsample", 0.8), "colsample_bytree": self.params.get("colsample_bytree", 0.8), "silent": self.params.get("silent", 1), "seed": self.params.get("seed", 1), } # check https://github.com/dmlc/xgboost/issues/5637 if self.learner_params["seed"] > 2147483647: self.learner_params["seed"] = self.learner_params["seed"] % 2147483647 if "num_class" in self.params: # multiclass classification self.learner_params["num_class"] = self.params.get("num_class") self.best_ntree_limit = 0 logger.debug("XgbLearner __init__")
Example #4
Source File: xgboost.py From mlflow with Apache License 2.0 | 5 votes |
def get_default_conda_env(): """ :return: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. """ import xgboost as xgb return _mlflow_conda_env( additional_conda_deps=None, # XGBoost is not yet available via the default conda channels, so we install it via pip additional_pip_deps=[ "xgboost=={}".format(xgb.__version__), ], additional_conda_channels=None)