Python utils.logging.setup_logging() Examples

The following are 3 code examples of utils.logging.setup_logging(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module utils.logging , or try the search function .
Example #1
Source File: train_net.py    From seg_every_thing with Apache License 2.0 5 votes vote down vote up
def main():
    # Initialize C2
    workspace.GlobalInit(
        ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1']
    )
    # Set up logging and load config options
    logger = setup_logging(__name__)
    logging.getLogger('roi_data.loader').setLevel(logging.INFO)
    args = parse_args()
    logger.info('Called with args:')
    logger.info(args)
    if args.cfg_file is not None:
        merge_cfg_from_file(args.cfg_file)
    if args.opts is not None:
        merge_cfg_from_list(args.opts)
    assert_and_infer_cfg()
    logger.info('Training with config:')
    logger.info(pprint.pformat(cfg))
    # Note that while we set the numpy random seed network training will not be
    # deterministic in general. There are sources of non-determinism that cannot
    # be removed with a reasonble execution-speed tradeoff (such as certain
    # non-deterministic cudnn functions).
    np.random.seed(cfg.RNG_SEED)
    # Execute the training run
    checkpoints = utils.train.train_model()
    # Test the trained model
    if not args.skip_test:
        test_model(checkpoints['final'], args.multi_gpu_testing, args.opts) 
Example #2
Source File: train_net.py    From masktextspotter.caffe2 with Apache License 2.0 5 votes vote down vote up
def main():
    # Initialize C2
    workspace.GlobalInit(
        ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1']
    )
    # Set up logging and load config options
    logger = setup_logging(__name__)
    logging.getLogger('roi_data.loader').setLevel(logging.INFO)
    args = parse_args()
    logger.info('Called with args:')
    logger.info(args)
    if args.cfg_file is not None:
        merge_cfg_from_file(args.cfg_file)
    if args.opts is not None:
        merge_cfg_from_list(args.opts)
    assert_and_infer_cfg()
    logger.info('Training with config:')
    logger.info(pprint.pformat(cfg))
    # Note that while we set the numpy random seed network training will not be
    # deterministic in general. There are sources of non-determinism that cannot
    # be removed with a reasonble execution-speed tradeoff (such as certain
    # non-deterministic cudnn functions).
    np.random.seed(cfg.RNG_SEED)
    # Execute the training run
    checkpoints = train_model()
    # Test the trained model
    if not args.skip_test:
        test_model(checkpoints['final'], args.multi_gpu_testing, args.opts) 
Example #3
Source File: train_net.py    From NucleiDetectron with Apache License 2.0 5 votes vote down vote up
def main():
    # Initialize C2
    workspace.GlobalInit(
        ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1']
    )
    # Set up logging and load config options
    logger = setup_logging(__name__)
    logging.getLogger('roi_data.loader').setLevel(logging.INFO)
    args = parse_args()
    logger.info('Called with args:')
    logger.info(args)
    if args.cfg_file is not None:
        merge_cfg_from_file(args.cfg_file)
    if args.opts is not None:
        merge_cfg_from_list(args.opts)
    assert_and_infer_cfg()
    logger.info('Training with config:')
    logger.info(pprint.pformat(cfg))
    # Note that while we set the numpy random seed network training will not be
    # deterministic in general. There are sources of non-determinism that cannot
    # be removed with a reasonble execution-speed tradeoff (such as certain
    # non-deterministic cudnn functions).
    np.random.seed(cfg.RNG_SEED)
    # Execute the training run
    checkpoints = train_model()
    # Test the trained model
    if not args.skip_test:
        test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)