Python utils.logging.Logger() Examples
The following are 6
code examples of utils.logging.Logger().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils.logging
, or try the search function
.
Example #1
Source File: training_sda.py From d-SNE with Apache License 2.0 | 6 votes |
def create_logger(self): """ Create the logger including the file log and summary log :return: logger and summary writer """ if self.args.training: logger = Logger(self.args.log, '%s-%s' % (self.args.method, self.args.postfix), rm_exist=self.args.start_epoch == 0) logger.update_dict(vars(self.args)) if self.args.mxboard: from mxboard import SummaryWriter sw = SummaryWriter(logdir=self.args.log) else: sw = None else: logger, sw = None, None return logger, sw
Example #2
Source File: run.py From graph_distillation with Apache License 2.0 | 5 votes |
def train(opt, model, dataloader): # Logging logger = logging.Logger(opt.ckpt_path, opt.split) stats = logging.Statistics(opt.ckpt_path, opt.split) logger.log(opt) model.load(opt.load_ckpt_paths, opt.load_opts, opt.load_epoch) for epoch in range(1, opt.n_epochs + 1): for step, data in enumerate(dataloader, 1): # inputs is a list of input of each modality inputs, label, _ = data ret = model.train(inputs, label) update = stats.update(len(label), ret) if utils.is_due(step, opt.print_every): utils.info('epoch {}/{}, step {}/{}: {}'.format( epoch, opt.n_epochs, step, len(dataloader), update)) logger.log('[Summary] epoch {}/{}: {}'.format(epoch, opt.n_epochs, stats.summarize())) if utils.is_due(epoch, opt.n_epochs, opt.save_every): model.save(epoch) stats.save() logger.log('***** saved *****') if utils.is_due(epoch, opt.lr_decay_at): lrs = model.lr_decay() logger.log('***** lr decay *****: {}'.format(lrs))
Example #3
Source File: run.py From graph_distillation with Apache License 2.0 | 5 votes |
def test(opt, model, dataloader): # Logging logger = logging.Logger(opt.ckpt_path, opt.split) stats = logging.Statistics(opt.ckpt_path, opt.split) logger.log(opt) model.load(opt.load_ckpt_paths, opt.load_opts, opt.load_epoch) all_scores = [] video_names = [] for step, data in enumerate(dataloader, 1): inputs, label, vid_name = data info_acc, logits, scores = model.test(inputs, label, opt.timestep) all_scores.append(scores) video_names.append(vid_name[0]) update = stats.update(logits.shape[0], info_acc) if utils.is_due(step, opt.print_every): utils.info('step {}/{}: {}'.format(step, len(dataloader), update)) logger.log('[Summary] {}'.format(stats.summarize())) # Evaluate iou_thresholds = [0.1, 0.3, 0.5] groundtruth_dir = os.path.join(opt.dset_path, opt.dset, 'groundtruth', 'validation/cross-subject') assert os.path.exists(groundtruth_dir), '{} does not exist'.format(groundtruth_dir) mean_aps = calc_map(opt, all_scores, video_names, groundtruth_dir, iou_thresholds) for i in range(len(iou_thresholds)): logger.log('IoU: {}, mAP: {}'.format(iou_thresholds[i], mean_aps[i]))
Example #4
Source File: run.py From graph_distillation with Apache License 2.0 | 5 votes |
def train(opt, model, dataloader): """Train the model.""" # Logging logger = logging.Logger(opt.ckpt_path, opt.split) stats = logging.Statistics(opt.ckpt_path, opt.split) logger.log(opt) model.load(opt.load_ckpt_paths, opt.load_epoch) for epoch in range(1, opt.n_epochs + 1): for step, data in enumerate(dataloader, 1): ret = model.train(*data) update = stats.update(data[-1].size(0), ret) if utils.is_due(step, opt.print_every): utils.info('epoch {}/{}, step {}/{}: {}'.format( epoch, opt.n_epochs, step, len(dataloader), update)) logger.log('[Summary] epoch {}/{}: {}'.format(epoch, opt.n_epochs, stats.summarize())) if utils.is_due(epoch, opt.n_epochs, opt.save_every): model.save(epoch) logger.log('***** saved *****') if utils.is_due(epoch, opt.lr_decay_at): lrs = model.lr_decay() logger.log('***** lr decay *****: {}'.format(lrs))
Example #5
Source File: run.py From graph_distillation with Apache License 2.0 | 5 votes |
def test(opt, model, dataloader): '''Test model.''' # Logging logger = logging.Logger(opt.load_ckpt_path, opt.split) stats = logging.Statistics(opt.ckpt_path, opt.split) logger.log(opt) logits, labels = [], [] model.load(opt.load_ckpt_paths, opt.load_epoch) for step, data in enumerate(dataloader, 1): inputs, label = data info_acc, logit = model.test(inputs, label) logits.append(utils.to_numpy(logit.squeeze(0))) labels.append(utils.to_numpy(label)) update = stats.update(label.size(0), info_acc) if utils.is_due(step, opt.print_every): utils.info('step {}/{}: {}'.format(step, len(dataloader), update)) logits = np.concatenate(logits, axis=0) length, n_classes = logits.shape labels = np.concatenate(labels) scores = utils.softmax(logits, axis=1) # Accuracy preds = np.argmax(scores, axis=1) acc = np.sum(preds == labels) / length # Average precision y_true = np.zeros((length, n_classes)) y_true[np.arange(length), labels] = 1 aps = average_precision_score(y_true, scores, average=None) aps = list(filter(lambda x: not np.isnan(x), aps)) mAP = np.mean(aps) logger.log('[Summary]: {}'.format(stats.summarize())) logger.log('Acc: {}, mAP: {}'.format(acc, mAP))
Example #6
Source File: run.py From pymarl with Apache License 2.0 | 4 votes |
def run(_run, _config, _log): # check args sanity _config = args_sanity_check(_config, _log) args = SN(**_config) args.device = "cuda" if args.use_cuda else "cpu" # setup loggers logger = Logger(_log) _log.info("Experiment Parameters:") experiment_params = pprint.pformat(_config, indent=4, width=1) _log.info("\n\n" + experiment_params + "\n") # configure tensorboard logger unique_token = "{}__{}".format(args.name, datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) args.unique_token = unique_token if args.use_tensorboard: tb_logs_direc = os.path.join(dirname(dirname(abspath(__file__))), "results", "tb_logs") tb_exp_direc = os.path.join(tb_logs_direc, "{}").format(unique_token) logger.setup_tb(tb_exp_direc) # sacred is on by default logger.setup_sacred(_run) # Run and train run_sequential(args=args, logger=logger) # Clean up after finishing print("Exiting Main") print("Stopping all threads") for t in threading.enumerate(): if t.name != "MainThread": print("Thread {} is alive! Is daemon: {}".format(t.name, t.daemon)) t.join(timeout=1) print("Thread joined") print("Exiting script") # Making sure framework really exits os._exit(os.EX_OK)