Python pandas.core.algorithms.factorize() Examples
The following are 30
code examples of pandas.core.algorithms.factorize().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.core.algorithms
, or try the search function
.
Example #1
Source File: test_algos.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel)
Example #2
Source File: test_algos.py From recruit with Apache License 2.0 | 6 votes |
def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel)
Example #3
Source File: test_algos.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, 1], dtype=np.uint64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, -1], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques)
Example #4
Source File: test_algos.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel)
Example #5
Source File: test_algos.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp)
Example #6
Source File: test_algos.py From recruit with Apache License 2.0 | 6 votes |
def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp)
Example #7
Source File: base.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def factorize(self, sort=False, na_sentinel=-1): """ Encode the object as an enumerated type or categorical variable Parameters ---------- sort : boolean, default False Sort by values na_sentinel: int, default -1 Value to mark "not found" Returns ------- labels : the indexer to the original array uniques : the unique Index """ from pandas.core.algorithms import factorize return factorize(self, sort=sort, na_sentinel=na_sentinel)
Example #8
Source File: test_algos.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel)
Example #9
Source File: base.py From Splunking-Crime with GNU Affero General Public License v3.0 | 6 votes |
def factorize(self, sort=False, na_sentinel=-1): """ Encode the object as an enumerated type or categorical variable Parameters ---------- sort : boolean, default False Sort by values na_sentinel: int, default -1 Value to mark "not found" Returns ------- labels : the indexer to the original array uniques : the unique Index """ from pandas.core.algorithms import factorize return factorize(self, sort=sort, na_sentinel=na_sentinel)
Example #10
Source File: test_algos.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = pd.Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = pd.Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp)
Example #11
Source File: test_algos.py From vnpy_crypto with MIT License | 6 votes |
def test_factorize_nan(self): # nan should map to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(len(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel) # nan still maps to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert len(set(key)) == len(set(expected)) tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel)
Example #12
Source File: test_algos.py From vnpy_crypto with MIT License | 6 votes |
def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, 1], dtype=np.uint64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63, -1], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques)
Example #13
Source File: groupby.py From Computable with MIT License | 6 votes |
def _get_compressed_labels(self): all_labels = [ping.labels for ping in self.groupings] if self._overflow_possible: tups = lib.fast_zip(all_labels) labs, uniques = algos.factorize(tups) if self.sort: uniques, labs = _reorder_by_uniques(uniques, labs) return labs, uniques else: if len(all_labels) > 1: group_index = get_group_index(all_labels, self.shape) comp_ids, obs_group_ids = _compress_group_index(group_index) else: ping = self.groupings[0] comp_ids = ping.labels obs_group_ids = np.arange(len(ping.group_index)) self.compressed = False self._filter_empty_groups = False return comp_ids, obs_group_ids
Example #14
Source File: test_algos.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp)
Example #15
Source File: test_algos.py From vnpy_crypto with MIT License | 6 votes |
def test_mixed(self): # doc example reshaping.rst x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, uniques = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(uniques, exp) labels, uniques = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(uniques, exp)
Example #16
Source File: multi.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def _get_grouper_for_level(self, mapper, level): indexer = self.labels[level] level_index = self.levels[level] if mapper is not None: # Handle group mapping function and return level_values = self.levels[level].take(indexer) grouper = level_values.map(mapper) return grouper, None, None labels, uniques = algos.factorize(indexer, sort=True) if len(uniques) > 0 and uniques[0] == -1: # Handle NAs mask = indexer != -1 ok_labels, uniques = algos.factorize(indexer[mask], sort=True) labels = np.empty(len(indexer), dtype=indexer.dtype) labels[mask] = ok_labels labels[~mask] = -1 if len(uniques) < len(level_index): # Remove unobserved levels from level_index level_index = level_index.take(uniques) grouper = level_index.take(labels) return grouper, labels, level_index
Example #17
Source File: test_algos.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_uniques = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques)
Example #18
Source File: test_algos.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_basic(self): labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( uniques, np.array(['a', 'b', 'c'], dtype=object)) labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp)
Example #19
Source File: groupby.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def _make_labels(self): if self._labels is None or self._group_index is None: # we have a list of groupers if isinstance(self.grouper, BaseGrouper): labels = self.grouper.label_info uniques = self.grouper.result_index else: labels, uniques = algorithms.factorize( self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._labels = labels self._group_index = uniques
Example #20
Source File: test_algos.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if pd._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True)
Example #21
Source File: test_algos.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_hashtable_factorize(self, htable, tm_dtype, writable): # output of maker has guaranteed unique elements maker = getattr(tm, 'make' + tm_dtype + 'Index') s = Series(maker(1000)) if htable == ht.Float64HashTable: # add NaN for float column s.loc[500] = np.nan elif htable == ht.PyObjectHashTable: # use different NaN types for object column s.loc[500:502] = [np.nan, None, pd.NaT] # create duplicated selection s_duplicated = s.sample(frac=3, replace=True).reset_index(drop=True) s_duplicated.values.setflags(write=writable) na_mask = s_duplicated.isna().values result_unique, result_inverse = htable().factorize(s_duplicated.values) # drop_duplicates has own cython code (hash_table_func_helper.pxi) # and is tested separately; keeps first occurrence like ht.factorize() # since factorize removes all NaNs, we do the same here expected_unique = s_duplicated.dropna().drop_duplicates().values tm.assert_numpy_array_equal(result_unique, expected_unique) # reconstruction can only succeed if the inverse is correct. Since # factorize removes the NaNs, those have to be excluded here as well result_reconstruct = result_unique[result_inverse[~na_mask]] expected_reconstruct = s_duplicated.dropna().values tm.assert_numpy_array_equal(result_reconstruct, expected_reconstruct)
Example #22
Source File: test_algos.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_factorize_na_sentinel(self, sort, na_sentinel): data = np.array(['b', 'a', None, 'b'], dtype=object) labels, uniques = algos.factorize(data, sort=sort, na_sentinel=na_sentinel) if sort: expected_labels = np.array([1, 0, na_sentinel, 1], dtype=np.intp) expected_uniques = np.array(['a', 'b'], dtype=object) else: expected_labels = np.array([0, 1, na_sentinel, 0], dtype=np.intp) expected_uniques = np.array(['b', 'a'], dtype=object) tm.assert_numpy_array_equal(labels, expected_labels) tm.assert_numpy_array_equal(uniques, expected_uniques)
Example #23
Source File: test_algos.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_uniques = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_uniques)
Example #24
Source File: test_algos.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_object_factorize(self, writable): data = np.array(['a', 'c', None, np.nan, 'a', 'b', pd.NaT, 'c'], dtype=object) data.setflags(write=writable) exp_labels = np.array([0, 1, -1, -1, 0, 2, -1, 1], dtype=np.intp) exp_uniques = np.array(['a', 'c', 'b'], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques)
Example #25
Source File: test_algos.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_string_factorize(self, writable): data = np.array(['a', 'c', 'a', 'b', 'c'], dtype=object) data.setflags(write=writable) exp_labels = np.array([0, 1, 0, 2, 1], dtype=np.intp) exp_uniques = np.array(['a', 'c', 'b'], dtype=object) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques)
Example #26
Source File: test_algos.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_int64_factorize(self, writable): data = np.array([2**63 - 1, -2**63, 2**63 - 1], dtype=np.int64) data.setflags(write=writable) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**63 - 1, -2**63], dtype=np.int64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques)
Example #27
Source File: test_algos.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_uint64_factorize(self, writable): data = np.array([2**64 - 1, 1, 2**64 - 1], dtype=np.uint64) data.setflags(write=writable) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_uniques = np.array([2**64 - 1, 1], dtype=np.uint64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques)
Example #28
Source File: test_algos.py From recruit with Apache License 2.0 | 5 votes |
def test_basic(self): labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( uniques, np.array(['a', 'b', 'c'], dtype=object)) labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp) labels, uniques = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(uniques, exp)
Example #29
Source File: test_algos.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_float64_factorize(self, writable): data = np.array([1.0, 1e8, 1.0, 1e-8, 1e8, 1.0], dtype=np.float64) data.setflags(write=writable) exp_labels = np.array([0, 1, 0, 2, 1, 0], dtype=np.intp) exp_uniques = np.array([1.0, 1e8, 1e-8], dtype=np.float64) labels, uniques = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(uniques, exp_uniques)
Example #30
Source File: grouper.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _make_labels(self): if self._labels is None or self._group_index is None: # we have a list of groupers if isinstance(self.grouper, BaseGrouper): labels = self.grouper.label_info uniques = self.grouper.result_index else: labels, uniques = algorithms.factorize( self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._labels = labels self._group_index = uniques