Python pandas.core.algorithms.quantile() Examples
The following are 13
code examples of pandas.core.algorithms.quantile().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.core.algorithms
, or try the search function
.
Example #1
Source File: test_qcut.py From recruit with Apache License 2.0 | 6 votes |
def test_qcut(): arr = np.random.randn(1000) # We store the bins as Index that have been # rounded to comparisons are a bit tricky. labels, bins = qcut(arr, 4, retbins=True) ex_bins = quantile(arr, [0, .25, .5, .75, 1.]) result = labels.categories.left.values assert np.allclose(result, ex_bins[:-1], atol=1e-2) result = labels.categories.right.values assert np.allclose(result, ex_bins[1:], atol=1e-2) ex_levels = cut(arr, ex_bins, include_lowest=True) tm.assert_categorical_equal(labels, ex_levels)
Example #2
Source File: test_qcut.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def test_qcut(): arr = np.random.randn(1000) # We store the bins as Index that have been # rounded to comparisons are a bit tricky. labels, bins = qcut(arr, 4, retbins=True) ex_bins = quantile(arr, [0, .25, .5, .75, 1.]) result = labels.categories.left.values assert np.allclose(result, ex_bins[:-1], atol=1e-2) result = labels.categories.right.values assert np.allclose(result, ex_bins[1:], atol=1e-2) ex_levels = cut(arr, ex_bins, include_lowest=True) tm.assert_categorical_equal(labels, ex_levels)
Example #3
Source File: test_qcut.py From coffeegrindsize with MIT License | 6 votes |
def test_qcut(): arr = np.random.randn(1000) # We store the bins as Index that have been # rounded to comparisons are a bit tricky. labels, bins = qcut(arr, 4, retbins=True) ex_bins = quantile(arr, [0, .25, .5, .75, 1.]) result = labels.categories.left.values assert np.allclose(result, ex_bins[:-1], atol=1e-2) result = labels.categories.right.values assert np.allclose(result, ex_bins[1:], atol=1e-2) ex_levels = cut(arr, ex_bins, include_lowest=True) tm.assert_categorical_equal(labels, ex_levels)
Example #4
Source File: test_algos.py From recruit with Apache License 2.0 | 5 votes |
def test_quantile(): s = Series(np.random.randn(100)) result = algos.quantile(s, [0, .25, .5, .75, 1.]) expected = algos.quantile(s.values, [0, .25, .5, .75, 1.]) tm.assert_almost_equal(result, expected)
Example #5
Source File: test_tile.py From vnpy_crypto with MIT License | 5 votes |
def test_qcut(self): arr = np.random.randn(1000) # We store the bins as Index that have been rounded # to comparisons are a bit tricky. labels, bins = qcut(arr, 4, retbins=True) ex_bins = quantile(arr, [0, .25, .5, .75, 1.]) result = labels.categories.left.values assert np.allclose(result, ex_bins[:-1], atol=1e-2) result = labels.categories.right.values assert np.allclose(result, ex_bins[1:], atol=1e-2) ex_levels = cut(arr, ex_bins, include_lowest=True) tm.assert_categorical_equal(labels, ex_levels)
Example #6
Source File: test_algos.py From vnpy_crypto with MIT License | 5 votes |
def test_quantile(): s = Series(np.random.randn(100)) result = algos.quantile(s, [0, .25, .5, .75, 1.]) expected = algos.quantile(s.values, [0, .25, .5, .75, 1.]) tm.assert_almost_equal(result, expected)
Example #7
Source File: tile.py From Computable with MIT License | 5 votes |
def qcut(x, q, labels=None, retbins=False, precision=3): """ Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating quantile membership for each data point. Parameters ---------- x : ndarray or Series q : integer or array of quantiles Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles labels : array or boolean, default None Labels to use for bin edges, or False to return integer bin labels retbins : bool, optional Whether to return the bins or not. Can be useful if bins is given as a scalar. Returns ------- cat : Categorical Notes ----- Out of bounds values will be NA in the resulting Categorical object Examples -------- """ if com.is_integer(q): quantiles = np.linspace(0, 1, q + 1) else: quantiles = q bins = algos.quantile(x, quantiles) return _bins_to_cuts(x, bins, labels=labels, retbins=retbins, precision=precision, include_lowest=True)
Example #8
Source File: test_tile.py From Computable with MIT License | 5 votes |
def test_qcut(self): arr = np.random.randn(1000) labels, bins = qcut(arr, 4, retbins=True) ex_bins = quantile(arr, [0, .25, .5, .75, 1.]) assert_almost_equal(bins, ex_bins) ex_levels = cut(arr, ex_bins, include_lowest=True) self.assert_(np.array_equal(labels, ex_levels))
Example #9
Source File: test_algos.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_quantile(): s = Series(np.random.randn(100)) result = algos.quantile(s, [0, .25, .5, .75, 1.]) expected = algos.quantile(s.values, [0, .25, .5, .75, 1.]) tm.assert_almost_equal(result, expected)
Example #10
Source File: test_tile.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_qcut(self): arr = np.random.randn(1000) # We store the bins as Index that have been rounded # to comparisons are a bit tricky. labels, bins = qcut(arr, 4, retbins=True) ex_bins = quantile(arr, [0, .25, .5, .75, 1.]) result = labels.categories.left.values assert np.allclose(result, ex_bins[:-1], atol=1e-2) result = labels.categories.right.values assert np.allclose(result, ex_bins[1:], atol=1e-2) ex_levels = cut(arr, ex_bins, include_lowest=True) tm.assert_categorical_equal(labels, ex_levels)
Example #11
Source File: test_algos.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_quantile(): s = Series(np.random.randn(100)) result = algos.quantile(s, [0, .25, .5, .75, 1.]) expected = algos.quantile(s.values, [0, .25, .5, .75, 1.]) tm.assert_almost_equal(result, expected)
Example #12
Source File: test_tile.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_qcut(self): arr = np.random.randn(1000) # We store the bins as Index that have been rounded # to comparisons are a bit tricky. labels, bins = qcut(arr, 4, retbins=True) ex_bins = quantile(arr, [0, .25, .5, .75, 1.]) result = labels.categories.left.values assert np.allclose(result, ex_bins[:-1], atol=1e-2) result = labels.categories.right.values assert np.allclose(result, ex_bins[1:], atol=1e-2) ex_levels = cut(arr, ex_bins, include_lowest=True) tm.assert_categorical_equal(labels, ex_levels)
Example #13
Source File: test_algos.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_quantile(): s = Series(np.random.randn(100)) result = algos.quantile(s, [0, .25, .5, .75, 1.]) expected = algos.quantile(s.values, [0, .25, .5, .75, 1.]) tm.assert_almost_equal(result, expected)