Python pandas.core.algorithms.SelectNSeries() Examples
The following are 6
code examples of pandas.core.algorithms.SelectNSeries().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.core.algorithms
, or try the search function
.
Example #1
Source File: series.py From vnpy_crypto with MIT License | 4 votes |
def nlargest(self, n=5, keep='first'): """ Return the largest `n` elements. Parameters ---------- n : int Return this many descending sorted values keep : {'first', 'last'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- top_n : Series The n largest values in the Series, in sorted order Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. See Also -------- Series.nsmallest Examples -------- >>> import pandas as pd >>> import numpy as np >>> s = pd.Series(np.random.randn(10**6)) >>> s.nlargest(10) # only sorts up to the N requested 219921 4.644710 82124 4.608745 421689 4.564644 425277 4.447014 718691 4.414137 43154 4.403520 283187 4.313922 595519 4.273635 503969 4.250236 121637 4.240952 dtype: float64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest()
Example #2
Source File: series.py From vnpy_crypto with MIT License | 4 votes |
def nsmallest(self, n=5, keep='first'): """ Return the smallest `n` elements. Parameters ---------- n : int Return this many ascending sorted values keep : {'first', 'last'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- bottom_n : Series The n smallest values in the Series, in sorted order Notes ----- Faster than ``.sort_values().head(n)`` for small `n` relative to the size of the ``Series`` object. See Also -------- Series.nlargest Examples -------- >>> import pandas as pd >>> import numpy as np >>> s = pd.Series(np.random.randn(10**6)) >>> s.nsmallest(10) # only sorts up to the N requested 288532 -4.954580 732345 -4.835960 64803 -4.812550 446457 -4.609998 501225 -4.483945 669476 -4.472935 973615 -4.401699 621279 -4.355126 773916 -4.347355 359919 -4.331927 dtype: float64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nsmallest()
Example #3
Source File: series.py From Splunking-Crime with GNU Affero General Public License v3.0 | 4 votes |
def nlargest(self, n=5, keep='first'): """ Return the largest `n` elements. Parameters ---------- n : int Return this many descending sorted values keep : {'first', 'last'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- top_n : Series The n largest values in the Series, in sorted order Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. See Also -------- Series.nsmallest Examples -------- >>> import pandas as pd >>> import numpy as np >>> s = pd.Series(np.random.randn(10**6)) >>> s.nlargest(10) # only sorts up to the N requested 219921 4.644710 82124 4.608745 421689 4.564644 425277 4.447014 718691 4.414137 43154 4.403520 283187 4.313922 595519 4.273635 503969 4.250236 121637 4.240952 dtype: float64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest()
Example #4
Source File: series.py From Splunking-Crime with GNU Affero General Public License v3.0 | 4 votes |
def nsmallest(self, n=5, keep='first'): """ Return the smallest `n` elements. Parameters ---------- n : int Return this many ascending sorted values keep : {'first', 'last'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- bottom_n : Series The n smallest values in the Series, in sorted order Notes ----- Faster than ``.sort_values().head(n)`` for small `n` relative to the size of the ``Series`` object. See Also -------- Series.nlargest Examples -------- >>> import pandas as pd >>> import numpy as np >>> s = pd.Series(np.random.randn(10**6)) >>> s.nsmallest(10) # only sorts up to the N requested 288532 -4.954580 732345 -4.835960 64803 -4.812550 446457 -4.609998 501225 -4.483945 669476 -4.472935 973615 -4.401699 621279 -4.355126 773916 -4.347355 359919 -4.331927 dtype: float64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nsmallest()
Example #5
Source File: series.py From elasticintel with GNU General Public License v3.0 | 4 votes |
def nlargest(self, n=5, keep='first'): """ Return the largest `n` elements. Parameters ---------- n : int Return this many descending sorted values keep : {'first', 'last', False}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- top_n : Series The n largest values in the Series, in sorted order Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. See Also -------- Series.nsmallest Examples -------- >>> import pandas as pd >>> import numpy as np >>> s = pd.Series(np.random.randn(10**6)) >>> s.nlargest(10) # only sorts up to the N requested 219921 4.644710 82124 4.608745 421689 4.564644 425277 4.447014 718691 4.414137 43154 4.403520 283187 4.313922 595519 4.273635 503969 4.250236 121637 4.240952 dtype: float64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest()
Example #6
Source File: series.py From elasticintel with GNU General Public License v3.0 | 4 votes |
def nsmallest(self, n=5, keep='first'): """ Return the smallest `n` elements. Parameters ---------- n : int Return this many ascending sorted values keep : {'first', 'last', False}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- bottom_n : Series The n smallest values in the Series, in sorted order Notes ----- Faster than ``.sort_values().head(n)`` for small `n` relative to the size of the ``Series`` object. See Also -------- Series.nlargest Examples -------- >>> import pandas as pd >>> import numpy as np >>> s = pd.Series(np.random.randn(10**6)) >>> s.nsmallest(10) # only sorts up to the N requested 288532 -4.954580 732345 -4.835960 64803 -4.812550 446457 -4.609998 501225 -4.483945 669476 -4.472935 973615 -4.401699 621279 -4.355126 773916 -4.347355 359919 -4.331927 dtype: float64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nsmallest()