Python visualizer.Visualizer() Examples

The following are 3 code examples of visualizer.Visualizer(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module visualizer , or try the search function .
Example #1
Source File: solvers.py    From ganimation_replicate with MIT License 5 votes vote down vote up
def initialize(self, opt):
        self.opt = opt
        self.visual = Visualizer()
        self.visual.initialize(self.opt) 
Example #2
Source File: gtsrb_visualize_example.py    From backdoor with MIT License 4 votes vote down vote up
def gtsrb_visualize_label_scan_bottom_right_white_4():

    print('loading dataset')
    X_test, Y_test = load_dataset()
    # transform numpy arrays into data generator
    test_generator = build_data_loader(X_test, Y_test)

    print('loading model')
    model_file = '%s/%s' % (MODEL_DIR, MODEL_FILENAME)
    model = load_model(model_file)

    # initialize visualizer
    visualizer = Visualizer(
        model, intensity_range=INTENSITY_RANGE, regularization=REGULARIZATION,
        input_shape=INPUT_SHAPE,
        init_cost=INIT_COST, steps=STEPS, lr=LR, num_classes=NUM_CLASSES,
        mini_batch=MINI_BATCH,
        upsample_size=UPSAMPLE_SIZE,
        attack_succ_threshold=ATTACK_SUCC_THRESHOLD,
        patience=PATIENCE, cost_multiplier=COST_MULTIPLIER,
        img_color=IMG_COLOR, batch_size=BATCH_SIZE, verbose=2,
        save_last=SAVE_LAST,
        early_stop=EARLY_STOP, early_stop_threshold=EARLY_STOP_THRESHOLD,
        early_stop_patience=EARLY_STOP_PATIENCE)

    log_mapping = {}

    # y_label list to analyze
    y_target_list = list(range(NUM_CLASSES))
    y_target_list.remove(Y_TARGET)
    y_target_list = [Y_TARGET] + y_target_list
    for y_target in y_target_list:

        print('processing label %d' % y_target)

        _, _, logs = visualize_trigger_w_mask(
            visualizer, test_generator, y_target=y_target,
            save_pattern_flag=True)

        log_mapping[y_target] = logs

    pass 
Example #3
Source File: learners.py    From rltrader with MIT License 4 votes vote down vote up
def __init__(self, rl_method='rl', stock_code=None, 
                chart_data=None, training_data=None,
                min_trading_unit=1, max_trading_unit=2, 
                delayed_reward_threshold=.05,
                net='dnn', num_steps=1, lr=0.001,
                value_network=None, policy_network=None,
                output_path='', reuse_models=True):
        # 인자 확인
        assert min_trading_unit > 0
        assert max_trading_unit > 0
        assert max_trading_unit >= min_trading_unit
        assert num_steps > 0
        assert lr > 0
        # 강화학습 기법 설정
        self.rl_method = rl_method
        # 환경 설정
        self.stock_code = stock_code
        self.chart_data = chart_data
        self.environment = Environment(chart_data)
        # 에이전트 설정
        self.agent = Agent(self.environment,
                    min_trading_unit=min_trading_unit,
                    max_trading_unit=max_trading_unit,
                    delayed_reward_threshold=delayed_reward_threshold)
        # 학습 데이터
        self.training_data = training_data
        self.sample = None
        self.training_data_idx = -1
        # 벡터 크기 = 학습 데이터 벡터 크기 + 에이전트 상태 크기
        self.num_features = self.agent.STATE_DIM
        if self.training_data is not None:
            self.num_features += self.training_data.shape[1]
        # 신경망 설정
        self.net = net
        self.num_steps = num_steps
        self.lr = lr
        self.value_network = value_network
        self.policy_network = policy_network
        self.reuse_models = reuse_models
        # 가시화 모듈
        self.visualizer = Visualizer()
        # 메모리
        self.memory_sample = []
        self.memory_action = []
        self.memory_reward = []
        self.memory_value = []
        self.memory_policy = []
        self.memory_pv = []
        self.memory_num_stocks = []
        self.memory_exp_idx = []
        self.memory_learning_idx = []
        # 에포크 관련 정보
        self.loss = 0.
        self.itr_cnt = 0
        self.exploration_cnt = 0
        self.batch_size = 0
        self.learning_cnt = 0
        # 로그 등 출력 경로
        self.output_path = output_path