Python mxnet.ndarray.norm() Examples
The following are 11
code examples of mxnet.ndarray.norm().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mxnet.ndarray
, or try the search function
.
Example #1
Source File: score_fun.py From dgl with Apache License 2.0 | 6 votes |
def create_neg(self, neg_head): gamma = self.gamma if neg_head: def fn(heads, relations, tails, num_chunks, chunk_size, neg_sample_size): relations = relations.reshape(num_chunks, -1, self.relation_dim) tails = tails - relations tails = tails.reshape(num_chunks, -1, 1, self.relation_dim) score = heads - tails return gamma - nd.norm(score, ord=1, axis=-1) return fn else: def fn(heads, relations, tails, num_chunks, chunk_size, neg_sample_size): relations = relations.reshape(num_chunks, -1, self.relation_dim) heads = heads - relations heads = heads.reshape(num_chunks, -1, 1, self.relation_dim) score = heads - tails return gamma - nd.norm(score, ord=1, axis=-1) return fn
Example #2
Source File: algos.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def calc_potential(exe, params, label_name, noise_precision, prior_precision): exe.copy_params_from(params) exe.forward(is_train=False) ret = 0.0 ret += (nd.norm( exe.outputs[0] - exe.arg_dict[label_name]).asscalar() ** 2) / 2.0 * noise_precision for v in params.values(): ret += (nd.norm(v).asscalar() ** 2) / 2.0 * prior_precision return ret
Example #3
Source File: utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def norm_clipping(params_grad, threshold): assert isinstance(params_grad, dict) norm_val = numpy.sqrt(sum([nd.norm(grad).asnumpy()[0]**2 for grad in params_grad.values()])) # print('grad norm: %g' % norm_val) ratio = 1.0 if norm_val > threshold: ratio = threshold / norm_val for grad in params_grad.values(): grad *= ratio return norm_val
Example #4
Source File: score_fun.py From dgl with Apache License 2.0 | 5 votes |
def batched_l2_dist(a, b): a_squared = nd.power(nd.norm(a, axis=-1), 2) b_squared = nd.power(nd.norm(b, axis=-1), 2) squared_res = nd.add(nd.linalg_gemm( a, nd.transpose(b, axes=(0, 2, 1)), nd.broadcast_axes(nd.expand_dims(b_squared, axis=-2), axis=1, size=a.shape[1]), alpha=-2 ), nd.expand_dims(a_squared, axis=-1)) res = nd.sqrt(nd.clip(squared_res, 1e-30, np.finfo(np.float32).max)) return res
Example #5
Source File: score_fun.py From dgl with Apache License 2.0 | 5 votes |
def batched_l1_dist(a, b): a = nd.expand_dims(a, axis=-2) b = nd.expand_dims(b, axis=-3) res = nd.norm(a - b, ord=1, axis=-1) return res
Example #6
Source File: score_fun.py From dgl with Apache License 2.0 | 5 votes |
def edge_func(self, edges): head = edges.src['emb'] tail = edges.dst['emb'] rel = edges.data['emb'] score = head + rel - tail return {'score': self.gamma - nd.norm(score, ord=self.dist_ord, axis=-1)}
Example #7
Source File: score_fun.py From dgl with Apache License 2.0 | 5 votes |
def edge_func(self, edges): head = edges.data['head_emb'] tail = edges.data['tail_emb'] rel = edges.data['emb'] score = head + rel - tail return {'score': self.gamma - nd.norm(score, ord=1, axis=-1)}
Example #8
Source File: algos.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def calc_potential(exe, params, label_name, noise_precision, prior_precision): exe.copy_params_from(params) exe.forward(is_train=False) ret = 0.0 ret += (nd.norm( exe.outputs[0] - exe.arg_dict[label_name]).asscalar() ** 2) / 2.0 * noise_precision for v in params.values(): ret += (nd.norm(v).asscalar() ** 2) / 2.0 * prior_precision return ret
Example #9
Source File: utils.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def norm_clipping(params_grad, threshold): assert isinstance(params_grad, dict) norm_val = numpy.sqrt(sum([nd.norm(grad).asnumpy()[0]**2 for grad in params_grad.values()])) # print('grad norm: %g' % norm_val) ratio = 1.0 if norm_val > threshold: ratio = threshold / norm_val for grad in params_grad.values(): grad *= ratio return norm_val
Example #10
Source File: algos.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def calc_potential(exe, params, label_name, noise_precision, prior_precision): exe.copy_params_from(params) exe.forward(is_train=False) ret = 0.0 ret += (nd.norm( exe.outputs[0] - exe.arg_dict[label_name]).asscalar() ** 2) / 2.0 * noise_precision for v in params.values(): ret += (nd.norm(v).asscalar() ** 2) / 2.0 * prior_precision return ret
Example #11
Source File: utils.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def norm_clipping(params_grad, threshold): assert isinstance(params_grad, dict) norm_val = numpy.sqrt(sum([nd.norm(grad).asnumpy()[0]**2 for grad in params_grad.values()])) # print('grad norm: %g' % norm_val) ratio = 1.0 if norm_val > threshold: ratio = threshold / norm_val for grad in params_grad.values(): grad *= ratio return norm_val