Python mxnet.ndarray.zeros_like() Examples
The following are 16
code examples of mxnet.ndarray.zeros_like().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mxnet.ndarray
, or try the search function
.
Example #1
Source File: gradcam.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def backward(self, req, out_grad, in_data, out_data, in_grad, aux): if ReluOp.guided_backprop: # Get output and gradients of output y = out_data[0] dy = out_grad[0] # Zero out the negatives in the gradients of the output dy_positives = nd.maximum(dy, nd.zeros_like(dy)) # What output values were greater than 0? y_ones = y.__gt__(0) # Mask out the values for which at least one of dy or y is negative dx = dy_positives * y_ones self.assign(in_grad[0], req[0], dx) else: # Regular backward for ReLU x = in_data[0] x_gt_zero = x.__gt__(0) dx = out_grad[0] * x_gt_zero self.assign(in_grad[0], req[0], dx)
Example #2
Source File: test_autograd.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_out_grads(): x = nd.ones((3, 5)) dx = nd.zeros_like(x) mark_variables([x], [dx]) da = None db = nd.array([1,2,3,4,5]) dc = nd.array([5,4,3,2,1]) with record(): a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True) backward([a, b, c], [da, db, dc]) assert (dx.asnumpy() == np.array( [[1,1,1,1,1], [1,2,3,4,5], [5,4,3,2,1]])).all()
Example #3
Source File: gradcam.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def backward(self, req, out_grad, in_data, out_data, in_grad, aux): if ReluOp.guided_backprop: # Get output and gradients of output y = out_data[0] dy = out_grad[0] # Zero out the negatives in the gradients of the output dy_positives = nd.maximum(dy, nd.zeros_like(dy)) # What output values were greater than 0? y_ones = y.__gt__(0) # Mask out the values for which at least one of dy or y is negative dx = dy_positives * y_ones self.assign(in_grad[0], req[0], dx) else: # Regular backward for ReLU x = in_data[0] x_gt_zero = x.__gt__(0) dx = out_grad[0] * x_gt_zero self.assign(in_grad[0], req[0], dx)
Example #4
Source File: test_autograd.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def test_out_grads(): x = nd.ones((3, 5)) dx = nd.zeros_like(x) mark_variables([x], [dx]) da = None db = nd.array([1,2,3,4,5]) dc = nd.array([5,4,3,2,1]) with record(): a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True) backward([a, b, c], [da, db, dc]) assert (dx.asnumpy() == np.array( [[1,1,1,1,1], [1,2,3,4,5], [5,4,3,2,1]])).all()
Example #5
Source File: test_contrib_autograd.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def test_out_grads(): x = nd.ones((3, 5)) dx = nd.zeros_like(x) mark_variables([x], [dx]) da = None db = nd.array([1,2,3,4,5]) dc = nd.array([5,4,3,2,1]) with train_section(): a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True) backward([a, b, c], [da, db, dc]) assert (dx.asnumpy() == np.array( [[1,1,1,1,1], [1,2,3,4,5], [5,4,3,2,1]])).all()
Example #6
Source File: gradcam.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def forward(self, is_train, req, in_data, out_data, aux): x = in_data[0] y = nd.maximum(x, nd.zeros_like(x)) self.assign(out_data[0], req[0], y)
Example #7
Source File: test_autograd.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def grad_and_loss(func, argnum=None): """Return function that computes both gradient of arguments and loss value. Parameters ---------- func: a python function The forward (loss) function. argnum: an int or a list of int The index of argument to calculate gradient for. Returns ------- grad_and_loss_func: a python function A function that would compute both the gradient of arguments and loss value. """ @functools.wraps(func) def wrapped(*args): """Wrapped function.""" variables = args if argnum is not None: argnum_ = argnum if isinstance(argnum, list) else [argnum] variables = [args[i] for i in argnum_] for x in variables: assert isinstance(x, NDArray), "type of autograd input should NDArray." grads = [zeros_like(x) for x in variables] mark_variables(variables, grads) with record(): outputs = func(*args) backward([outputs] if isinstance(outputs, NDArray) else outputs) return grads, outputs return wrapped
Example #8
Source File: test_autograd.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def test_detach_updated_grad(): x = nd.ones((2, 2)) dx = nd.zeros_like(x) y = nd.ones_like(x) dy = nd.zeros_like(x) mark_variables([x, y], [dx, dy]) assert x._fresh_grad == False assert y._fresh_grad == False with record(): x2 = x + 2 y2 = x2 + y y2.backward() assert (dx.asnumpy() == 1).all() assert x._fresh_grad == True assert y._fresh_grad == True dx[:] = 0 x._fresh_grad = False y._fresh_grad = False assert x._fresh_grad == False assert y._fresh_grad == False with record(): x2 = x + 2 x2 = x2.detach() y2 = x2 + y y2.backward() assert (dx.asnumpy() == 0).all() assert y._fresh_grad == True assert x._fresh_grad == False
Example #9
Source File: test_contrib_autograd.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def test_detach_updated_grad(): x = nd.ones((2, 2)) dx = nd.zeros_like(x) y = nd.ones_like(x) dy = nd.zeros_like(x) mark_variables([x, y], [dx, dy]) assert x._fresh_grad == False assert y._fresh_grad == False with train_section(): x2 = x + 2 y2 = x2 + y y2.backward() assert (dx.asnumpy() == 1).all() assert x._fresh_grad == True assert y._fresh_grad == True dx[:] = 0 x._fresh_grad = False y._fresh_grad = False assert x._fresh_grad == False assert y._fresh_grad == False with train_section(): x2 = x + 2 x2 = x2.detach() y2 = x2 + y y2.backward() assert (dx.asnumpy() == 0).all() assert y._fresh_grad == True assert x._fresh_grad == False
Example #10
Source File: parall_module_local_v1.py From insightface with MIT License | 5 votes |
def kv_push(self, key, value): #if value.context!=mx.cpu(): # value = value.as_in_context(mx.cpu()) if not key in self._kvinit: self._distkv.init(key, nd.zeros_like(value)) self._kvinit[key] = 1 self._distkv.push(key, value) #get fc1 and partial fc7
Example #11
Source File: tensor.py From dgl with Apache License 2.0 | 5 votes |
def zeros_like(input): return nd.zeros_like(input)
Example #12
Source File: gradcam.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def forward(self, is_train, req, in_data, out_data, aux): x = in_data[0] y = nd.maximum(x, nd.zeros_like(x)) self.assign(out_data[0], req[0], y)
Example #13
Source File: parall_module_local_v1.py From 1.FaceRecognition with MIT License | 5 votes |
def kv_push(self, key, value): #if value.context!=mx.cpu(): # value = value.as_in_context(mx.cpu()) if not key in self._kvinit: self._distkv.init(key, nd.zeros_like(value)) self._kvinit[key] = 1 self._distkv.push(key, value) #get fc1 and partial fc7
Example #14
Source File: test_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def grad_and_loss(func, argnum=None): """Return function that computes both gradient of arguments and loss value. Parameters ---------- func: a python function The forward (loss) function. argnum: an int or a list of int The index of argument to calculate gradient for. Returns ------- grad_and_loss_func: a python function A function that would compute both the gradient of arguments and loss value. """ @functools.wraps(func) def wrapped(*args): """Wrapped function.""" variables = args if argnum is not None: argnum_ = argnum if isinstance(argnum, list) else [argnum] variables = [args[i] for i in argnum_] for x in variables: assert isinstance(x, NDArray), "type of autograd input should NDArray." grads = [zeros_like(x) for x in variables] mark_variables(variables, grads) with record(): outputs = func(*args) backward([outputs] if isinstance(outputs, NDArray) else outputs) return grads, outputs return wrapped
Example #15
Source File: test_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def test_detach_updated_grad(): x = nd.ones((2, 2)) dx = nd.zeros_like(x) y = nd.ones_like(x) dy = nd.zeros_like(x) mark_variables([x, y], [dx, dy]) assert x._fresh_grad == False assert y._fresh_grad == False with record(): x2 = x + 2 y2 = x2 + y y2.backward() assert (dx.asnumpy() == 1).all() assert x._fresh_grad == True assert y._fresh_grad == True dx[:] = 0 x._fresh_grad = False y._fresh_grad = False assert x._fresh_grad == False assert y._fresh_grad == False with record(): x2 = x + 2 x2 = x2.detach() y2 = x2 + y y2.backward() assert (dx.asnumpy() == 0).all() assert y._fresh_grad == True assert x._fresh_grad == False
Example #16
Source File: test_contrib_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def test_detach_updated_grad(): x = nd.ones((2, 2)) dx = nd.zeros_like(x) y = nd.ones_like(x) dy = nd.zeros_like(x) mark_variables([x, y], [dx, dy]) assert x._fresh_grad == False assert y._fresh_grad == False with train_section(): x2 = x + 2 y2 = x2 + y y2.backward() assert (dx.asnumpy() == 1).all() assert x._fresh_grad == True assert y._fresh_grad == True dx[:] = 0 x._fresh_grad = False y._fresh_grad = False assert x._fresh_grad == False assert y._fresh_grad == False with train_section(): x2 = x + 2 x2 = x2.detach() y2 = x2 + y y2.backward() assert (dx.asnumpy() == 0).all() assert y._fresh_grad == True assert x._fresh_grad == False