Python mxnet.ndarray.load() Examples
The following are 25
code examples of mxnet.ndarray.load().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mxnet.ndarray
, or try the search function
.
Example #1
Source File: utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def load_params(dir_path="", epoch=None, name=""): prefix = os.path.join(dir_path, name) _, param_loading_path, _ = get_saving_path(prefix, epoch) while not os.path.isfile(param_loading_path): logging.info("in load_param, %s Not Found!" % param_loading_path) time.sleep(60) save_dict = nd.load(param_loading_path) arg_params = {} aux_params = {} for k, v in save_dict.items(): tp, name = k.split(':', 1) if tp == 'arg': arg_params[name] = v if tp == 'aux': aux_params[name] = v return arg_params, aux_params, param_loading_path
Example #2
Source File: utils.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def load_params(dir_path="", epoch=None, name=""): prefix = os.path.join(dir_path, name) _, param_loading_path, _ = get_saving_path(prefix, epoch) while not os.path.isfile(param_loading_path): logging.info("in load_param, %s Not Found!" % param_loading_path) time.sleep(60) save_dict = nd.load(param_loading_path) arg_params = {} aux_params = {} for k, v in save_dict.items(): tp, name = k.split(':', 1) if tp == 'arg': arg_params[name] = v if tp == 'aux': aux_params[name] = v return arg_params, aux_params, param_loading_path
Example #3
Source File: utils.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def load_params(dir_path="", epoch=None, name=""): prefix = os.path.join(dir_path, name) _, param_loading_path, _ = get_saving_path(prefix, epoch) while not os.path.isfile(param_loading_path): logging.info("in load_param, %s Not Found!" % param_loading_path) time.sleep(60) save_dict = nd.load(param_loading_path) arg_params = {} aux_params = {} for k, v in save_dict.items(): tp, name = k.split(':', 1) if tp == 'arg': arg_params[name] = v if tp == 'aux': aux_params[name] = v return arg_params, aux_params, param_loading_path
Example #4
Source File: utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def load_misc(dir_path="", epoch=None, name=""): prefix = os.path.join(dir_path, name) _, _, misc_saving_path = get_saving_path(prefix, epoch) with open(misc_saving_path, 'r') as fp: misc = json.load(fp) return misc
Example #5
Source File: utils.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def load_npz(path): with numpy.load(path) as data: ret = {k: data[k] for k in data.keys()} return ret
Example #6
Source File: utils.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def load_misc(dir_path="", epoch=None, name=""): prefix = os.path.join(dir_path, name) _, _, misc_saving_path = get_saving_path(prefix, epoch) with open(misc_saving_path, 'r') as fp: misc = json.load(fp) return misc
Example #7
Source File: resnetv1b_pruned.py From panoptic-fpn-gluon with Apache License 2.0 | 5 votes |
def resnet101_v1d_73(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): """Constructs a ResNetV1d-101_2.2x model. Uses resnet101_v1d construction from resnetv1b.py Parameters ---------- pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default CPU The context in which to load the pretrained weights. """ model = ResNetV1b(BottleneckV1b, [3, 4, 23, 3], deep_stem=True, avg_down=True, name_prefix='resnetv1d_', **kwargs) dirname = os.path.dirname(__file__) json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (101, 1, 2.2) + ".json") with open(json_filename, "r") as jsonFile: params_shapes = json.load(jsonFile) if pretrained: from ..model_store import get_model_file params_file = get_model_file('resnet%d_v%dd_%.1fx' % (101, 1, 2.2), tag=pretrained, root=root) prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file), pretrained=True, ctx=ctx) else: prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx) if pretrained: from ...data import ImageNet1kAttr attrib = ImageNet1kAttr() model.synset = attrib.synset model.classes = attrib.classes model.classes_long = attrib.classes_long return model
Example #8
Source File: resnetv1b_pruned.py From panoptic-fpn-gluon with Apache License 2.0 | 5 votes |
def resnet50_v1d_11(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): """Constructs a ResNetV1d-50_8.8x model. Uses resnet50_v1d construction from resnetv1b.py Parameters ---------- pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default CPU The context in which to load the pretrained weights. """ model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, avg_down=True, name_prefix='resnetv1d_', **kwargs) dirname = os.path.dirname(__file__) json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (50, 1, 8.8) + ".json") with open(json_filename, "r") as jsonFile: params_shapes = json.load(jsonFile) if pretrained: from ..model_store import get_model_file params_file = get_model_file('resnet%d_v%dd_%.1fx' % (50, 1, 8.8), tag=pretrained, root=root) prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file), pretrained=True, ctx=ctx) else: prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx) if pretrained: from ...data import ImageNet1kAttr attrib = ImageNet1kAttr() model.synset = attrib.synset model.classes = attrib.classes model.classes_long = attrib.classes_long return model
Example #9
Source File: resnetv1b_pruned.py From panoptic-fpn-gluon with Apache License 2.0 | 5 votes |
def resnet50_v1d_37(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): """Constructs a ResNetV1d-50_5.9x model. Uses resnet50_v1d construction from resnetv1b.py Parameters ---------- pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default CPU The context in which to load the pretrained weights. """ model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, avg_down=True, name_prefix='resnetv1d_', **kwargs) dirname = os.path.dirname(__file__) json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (50, 1, 5.9) + ".json") with open(json_filename, "r") as jsonFile: params_shapes = json.load(jsonFile) if pretrained: from ..model_store import get_model_file params_file = get_model_file('resnet%d_v%dd_%.1fx' % (50, 1, 5.9), tag=pretrained, root=root) prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file), pretrained=True, ctx=ctx) else: prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx) if pretrained: from ...data import ImageNet1kAttr attrib = ImageNet1kAttr() model.synset = attrib.synset model.classes = attrib.classes model.classes_long = attrib.classes_long return model
Example #10
Source File: resnetv1b_pruned.py From panoptic-fpn-gluon with Apache License 2.0 | 5 votes |
def resnet50_v1d_48(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): """Constructs a ResNetV1d-50_3.6x model. Uses resnet50_v1d construction from resnetv1b.py Parameters ---------- pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default CPU The context in which to load the pretrained weights. """ model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, avg_down=True, name_prefix='resnetv1d_', **kwargs) dirname = os.path.dirname(__file__) json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (50, 1, 3.6) + ".json") with open(json_filename, "r") as jsonFile: params_shapes = json.load(jsonFile) if pretrained: from ..model_store import get_model_file params_file = get_model_file('resnet%d_v%dd_%.1fx' % (50, 1, 3.6), tag=pretrained, root=root) prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file), pretrained=True, ctx=ctx) else: prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx) if pretrained: from ...data import ImageNet1kAttr attrib = ImageNet1kAttr() model.synset = attrib.synset model.classes = attrib.classes model.classes_long = attrib.classes_long return model
Example #11
Source File: resnetv1b_pruned.py From panoptic-fpn-gluon with Apache License 2.0 | 5 votes |
def resnet50_v1d_86(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): """Constructs a ResNetV1d-50_1.8x model. Uses resnet50_v1d construction from resnetv1b.py Parameters ---------- pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default CPU The context in which to load the pretrained weights. """ model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, avg_down=True, name_prefix='resnetv1d_', **kwargs) dirname = os.path.dirname(__file__) json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (50, 1, 1.8) + ".json") with open(json_filename, "r") as jsonFile: params_shapes = json.load(jsonFile) if pretrained: from ..model_store import get_model_file params_file = get_model_file('resnet%d_v%dd_%.1fx' % (50, 1, 1.8), tag=pretrained, root=root) prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file), pretrained=True, ctx=ctx) else: prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx) if pretrained: from ...data import ImageNet1kAttr attrib = ImageNet1kAttr() model.synset = attrib.synset model.classes = attrib.classes model.classes_long = attrib.classes_long return model
Example #12
Source File: resnetv1b_pruned.py From panoptic-fpn-gluon with Apache License 2.0 | 5 votes |
def resnet18_v1b_89(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): """Constructs a ResNetV1b-18_2.6x model. Uses resnet18_v1b construction from resnetv1b.py Parameters ---------- pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default CPU The context in which to load the pretrained weights. """ model = ResNetV1b(BasicBlockV1b, [2, 2, 2, 2], name_prefix='resnetv1b_', **kwargs) dirname = os.path.dirname(__file__) json_filename = os.path.join(dirname, 'resnet%d_v%db_%.1fx' % (18, 1, 2.6) + ".json") with open(json_filename, "r") as jsonFile: params_shapes = json.load(jsonFile) if pretrained: from ..model_store import get_model_file params_file = get_model_file('resnet%d_v%db_%.1fx' % (18, 1, 2.6), tag=pretrained, root=root) prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file), pretrained=True, ctx=ctx) else: prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx) if pretrained: from ...data import ImageNet1kAttr attrib = ImageNet1kAttr() model.synset = attrib.synset model.classes = attrib.classes model.classes_long = attrib.classes_long return model
Example #13
Source File: utils.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def load_npz(path): with numpy.load(path) as data: ret = {k: data[k] for k in data.keys()} return ret
Example #14
Source File: utils.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def load_misc(dir_path="", epoch=None, name=""): prefix = os.path.join(dir_path, name) _, _, misc_saving_path = get_saving_path(prefix, epoch) with open(misc_saving_path, 'r') as fp: misc = json.load(fp) return misc
Example #15
Source File: oth_alpha_pose.py From imgclsmob with MIT License | 5 votes |
def _try_load_parameters(self, filename=None, model=None, ctx=None, allow_missing=False, ignore_extra=False): def getblock(parent, name): if len(name) == 1: if name[0].isnumeric(): return parent[int(name[0])] else: return getattr(parent, name[0]) else: if name[0].isnumeric(): return getblock(parent[int(name[0])], name[1:]) else: return getblock(getattr(parent, name[0]), name[1:]) if filename is not None: loaded = ndarray.load(filename) else: loaded = {k: v.data() for k, v in model._collect_params_with_prefix().items()} params = self._collect_params_with_prefix() if not loaded and not params: return if not any('.' in i for i in loaded.keys()): # legacy loading del loaded self.collect_params().load( filename, ctx, allow_missing, ignore_extra, self.prefix) return for name in loaded: if name in params: if params[name].shape != loaded[name].shape: continue params[name]._load_init(loaded[name], ctx)
Example #16
Source File: resnetv1b_pruned.py From gluon-cv with Apache License 2.0 | 5 votes |
def resnet101_v1d_73(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): """Constructs a ResNetV1d-101_2.2x model. Uses resnet101_v1d construction from resnetv1b.py Parameters ---------- pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default CPU The context in which to load the pretrained weights. """ model = ResNetV1b(BottleneckV1b, [3, 4, 23, 3], deep_stem=True, avg_down=True, name_prefix='resnetv1d_', **kwargs) dirname = os.path.dirname(__file__) json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (101, 1, 2.2) + ".json") with open(json_filename, "r") as jsonFile: params_shapes = json.load(jsonFile) if pretrained: from ..model_store import get_model_file params_file = get_model_file('resnet%d_v%dd_%.1fx' % (101, 1, 2.2), tag=pretrained, root=root) prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file), pretrained=True, ctx=ctx) else: prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx) if pretrained: from ...data import ImageNet1kAttr attrib = ImageNet1kAttr() model.synset = attrib.synset model.classes = attrib.classes model.classes_long = attrib.classes_long return model
Example #17
Source File: resnetv1b_pruned.py From gluon-cv with Apache License 2.0 | 5 votes |
def resnet101_v1d_76(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): """Constructs a ResNetV1d-101_1.9x model. Uses resnet101_v1d construction from resnetv1b.py Parameters ---------- pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default CPU The context in which to load the pretrained weights. """ model = ResNetV1b(BottleneckV1b, [3, 4, 23, 3], deep_stem=True, avg_down=True, name_prefix='resnetv1d_', **kwargs) dirname = os.path.dirname(__file__) json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (101, 1, 1.9) + ".json") with open(json_filename, "r") as jsonFile: params_shapes = json.load(jsonFile) if pretrained: from ..model_store import get_model_file params_file = get_model_file('resnet%d_v%dd_%.1fx' % (101, 1, 1.9), tag=pretrained, root=root) prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file), pretrained=True, ctx=ctx) else: prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx) if pretrained: from ...data import ImageNet1kAttr attrib = ImageNet1kAttr() model.synset = attrib.synset model.classes = attrib.classes model.classes_long = attrib.classes_long return model
Example #18
Source File: resnetv1b_pruned.py From gluon-cv with Apache License 2.0 | 5 votes |
def resnet50_v1d_11(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): """Constructs a ResNetV1d-50_8.8x model. Uses resnet50_v1d construction from resnetv1b.py Parameters ---------- pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default CPU The context in which to load the pretrained weights. """ model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, avg_down=True, name_prefix='resnetv1d_', **kwargs) dirname = os.path.dirname(__file__) json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (50, 1, 8.8) + ".json") with open(json_filename, "r") as jsonFile: params_shapes = json.load(jsonFile) if pretrained: from ..model_store import get_model_file params_file = get_model_file('resnet%d_v%dd_%.1fx' % (50, 1, 8.8), tag=pretrained, root=root) prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file), pretrained=True, ctx=ctx) else: prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx) if pretrained: from ...data import ImageNet1kAttr attrib = ImageNet1kAttr() model.synset = attrib.synset model.classes = attrib.classes model.classes_long = attrib.classes_long return model
Example #19
Source File: resnetv1b_pruned.py From gluon-cv with Apache License 2.0 | 5 votes |
def resnet50_v1d_48(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): """Constructs a ResNetV1d-50_3.6x model. Uses resnet50_v1d construction from resnetv1b.py Parameters ---------- pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default CPU The context in which to load the pretrained weights. """ model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, avg_down=True, name_prefix='resnetv1d_', **kwargs) dirname = os.path.dirname(__file__) json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (50, 1, 3.6) + ".json") with open(json_filename, "r") as jsonFile: params_shapes = json.load(jsonFile) if pretrained: from ..model_store import get_model_file params_file = get_model_file('resnet%d_v%dd_%.1fx' % (50, 1, 3.6), tag=pretrained, root=root) prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file), pretrained=True, ctx=ctx) else: prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx) if pretrained: from ...data import ImageNet1kAttr attrib = ImageNet1kAttr() model.synset = attrib.synset model.classes = attrib.classes model.classes_long = attrib.classes_long return model
Example #20
Source File: resnetv1b_pruned.py From gluon-cv with Apache License 2.0 | 5 votes |
def resnet50_v1d_86(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): """Constructs a ResNetV1d-50_1.8x model. Uses resnet50_v1d construction from resnetv1b.py Parameters ---------- pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default CPU The context in which to load the pretrained weights. """ model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, avg_down=True, name_prefix='resnetv1d_', **kwargs) dirname = os.path.dirname(__file__) json_filename = os.path.join(dirname, 'resnet%d_v%dd_%.1fx' % (50, 1, 1.8) + ".json") with open(json_filename, "r") as jsonFile: params_shapes = json.load(jsonFile) if pretrained: from ..model_store import get_model_file params_file = get_model_file('resnet%d_v%dd_%.1fx' % (50, 1, 1.8), tag=pretrained, root=root) prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file), pretrained=True, ctx=ctx) else: prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx) if pretrained: from ...data import ImageNet1kAttr attrib = ImageNet1kAttr() model.synset = attrib.synset model.classes = attrib.classes model.classes_long = attrib.classes_long return model
Example #21
Source File: resnetv1b_pruned.py From gluon-cv with Apache License 2.0 | 5 votes |
def resnet18_v1b_89(pretrained=False, root='~/.mxnet/models', ctx=cpu(0), **kwargs): """Constructs a ResNetV1b-18_2.6x model. Uses resnet18_v1b construction from resnetv1b.py Parameters ---------- pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. ctx : Context, default CPU The context in which to load the pretrained weights. """ model = ResNetV1b(BasicBlockV1b, [2, 2, 2, 2], name_prefix='resnetv1b_', **kwargs) dirname = os.path.dirname(__file__) json_filename = os.path.join(dirname, 'resnet%d_v%db_%.1fx' % (18, 1, 2.6) + ".json") with open(json_filename, "r") as jsonFile: params_shapes = json.load(jsonFile) if pretrained: from ..model_store import get_model_file params_file = get_model_file('resnet%d_v%db_%.1fx' % (18, 1, 2.6), tag=pretrained, root=root) prune_gluon_block(model, model.name, params_shapes, params=ndarray.load(params_file), pretrained=True, ctx=ctx) else: prune_gluon_block(model, model.name, params_shapes, params=None, pretrained=False, ctx=ctx) if pretrained: from ...data import ImageNet1kAttr attrib = ImageNet1kAttr() model.synset = attrib.synset model.classes = attrib.classes model.classes_long = attrib.classes_long return model
Example #22
Source File: utils.py From gluon-cv with Apache License 2.0 | 5 votes |
def _load_from_pytorch(self, filename, ctx=None): import torch from mxnet import nd loaded = torch.load(filename) params = self._collect_params_with_prefix() new_params = {} for name in loaded: if 'bn' in name or 'batchnorm' in name or '.downsample.1.' in name: if 'weight' in name: mxnet_name = name.replace('weight', 'gamma') elif 'bias' in name: mxnet_name = name.replace('bias', 'beta') else: mxnet_name = name new_params[mxnet_name] = nd.array(loaded[name].cpu().data.numpy()) else: new_params[name] = nd.array(loaded[name].cpu().data.numpy()) for name in new_params: if name not in params: print('==={}==='.format(name)) raise Exception if name in params: params[name]._load_init(new_params[name], ctx=ctx)
Example #23
Source File: utils.py From gluon-cv with Apache License 2.0 | 5 votes |
def _try_load_parameters(self, filename=None, model=None, ctx=None, allow_missing=False, ignore_extra=False): def getblock(parent, name): if len(name) == 1: if name[0].isnumeric(): return parent[int(name[0])] else: return getattr(parent, name[0]) else: if name[0].isnumeric(): return getblock(parent[int(name[0])], name[1:]) else: return getblock(getattr(parent, name[0]), name[1:]) if filename is not None: loaded = ndarray.load(filename) else: loaded = {k: v.data() for k, v in model._collect_params_with_prefix().items()} params = self._collect_params_with_prefix() if not loaded and not params: return if not any('.' in i for i in loaded.keys()): # legacy loading del loaded self.collect_params().load( filename, ctx, allow_missing, ignore_extra, self.prefix) return for name in loaded: if name in params: if params[name].shape != loaded[name].shape: continue params[name]._load_init(loaded[name], ctx)
Example #24
Source File: utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def load_npz(path): with numpy.load(path) as data: ret = {k: data[k] for k in data.keys()} return ret
Example #25
Source File: oth_alpha_pose.py From imgclsmob with MIT License | 4 votes |
def get_alphapose(name, dataset, num_joints, pretrained=False, pretrained_base=False, ctx=mx.cpu(), norm_layer=nn.BatchNorm, norm_kwargs=None, root=os.path.join('~', '.mxnet', 'models'), **kwargs): r"""Utility function to return AlphaPose networks. Parameters ---------- name : str Model name. dataset : str The name of dataset. pretrained : bool or str Boolean value controls whether to load the default pretrained weights for model. String value represents the hashtag for a certain version of pretrained weights. ctx : mxnet.Context Context such as mx.cpu(), mx.gpu(0). root : str Model weights storing path. Returns ------- mxnet.gluon.HybridBlock The AlphaPose network. """ if norm_kwargs is None: norm_kwargs = {} preact = FastSEResNet(name, norm_layer=norm_layer, **norm_kwargs) if not pretrained and pretrained_base: from gluoncv.model_zoo import get_model base_network = get_model(name, pretrained=True, root=root) _try_load_parameters(self=base_network, model=base_network) net = AlphaPose(preact, num_joints, **kwargs) if pretrained: from gluoncv.model_zoo.model_store import get_model_file full_name = '_'.join(('alpha_pose', name, dataset)) net.load_parameters(get_model_file(full_name, tag=pretrained, root=root)) else: import warnings with warnings.catch_warnings(record=True): warnings.simplefilter("always") net.collect_params().initialize() net.collect_params().reset_ctx(ctx) return net