Python mxnet.ndarray.array() Examples
The following are 30
code examples of mxnet.ndarray.array().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mxnet.ndarray
, or try the search function
.
Example #1
Source File: test_contrib_autograd.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_out_grads(): x = nd.ones((3, 5)) dx = nd.zeros_like(x) mark_variables([x], [dx]) da = None db = nd.array([1,2,3,4,5]) dc = nd.array([5,4,3,2,1]) with train_section(): a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True) backward([a, b, c], [da, db, dc]) assert (dx.asnumpy() == np.array( [[1,1,1,1,1], [1,2,3,4,5], [5,4,3,2,1]])).all()
Example #2
Source File: data.py From insightface with MIT License | 6 votes |
def next_sample(self): """Helper function for reading in next sample.""" if self.cur >= len(self.seq): raise StopIteration idx = self.seq[self.cur] self.cur += 1 uv_path = self.uv_file_list[idx] image_path = self.image_file_list[idx] uvmap = np.load(uv_path) img = cv2.imread(image_path)[:,:,::-1]#to rgb hlabel = uvmap #print(hlabel.shape) #hlabel = np.array(header.label).reshape( (self.output_label_size, self.output_label_size, self.num_classes) ) hlabel /= self.input_img_size return img, hlabel
Example #3
Source File: iterators.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def reset(self): """Resets the iterator to the beginning of the data.""" self.curr_idx = 0 #shuffle data in each bucket random.shuffle(self.idx) for i, buck in enumerate(self.sentences): self.indices[i], self.sentences[i], self.characters[i], self.label[i] = shuffle(self.indices[i], self.sentences[i], self.characters[i], self.label[i]) self.ndindex = [] self.ndsent = [] self.ndchar = [] self.ndlabel = [] #for each bucket of data for i, buck in enumerate(self.sentences): #append the lists with an array self.ndindex.append(ndarray.array(self.indices[i], dtype=self.dtype)) self.ndsent.append(ndarray.array(self.sentences[i], dtype=self.dtype)) self.ndchar.append(ndarray.array(self.characters[i], dtype=self.dtype)) self.ndlabel.append(ndarray.array(self.label[i], dtype=self.dtype))
Example #4
Source File: faces_classer.py From 1.FaceRecognition with MIT License | 6 votes |
def face_create_lib(args, npz_embs, npz_emb_len, embedding, item, fd, max_nums): # 得到当前ID的总个数 id_sum = npz_embs.shape[0] # 为新的人脸入库,创建一个新的文件夹 new_lib_dir = os.path.join(args.outdir, '%08d' % id_sum) os.mkdir(new_lib_dir) # 为了统一,扩展一个维度 embedding = np.expand_dims(embedding, axis=0) # 特征向量以及对应的ID图片的数目,都进行垂直拼接 npz_embs = np.vstack((npz_embs, embedding.reshape(1, -1))) npz_emb_len = np.vstack((npz_emb_len, np.array([[1]]))) new_img_path = os.path.join(new_lib_dir, '00000' + args.encoding) old_img_path = os.path.join(args.indir, item[1]) fd.write(old_img_path + '\t' + new_img_path + '\t' + str(max_nums) + '\n\n') shutil.copyfile(old_img_path, new_img_path) if args.delete: os.remove(old_img_path) return npz_embs,npz_emb_len
Example #5
Source File: data.py From insightface with MIT License | 6 votes |
def pairwise_dists(self, embeddings): nd_embedding_list = [] for i in xrange(self.ctx_num): nd_embedding = mx.nd.array(embeddings, mx.gpu(i)) nd_embedding_list.append(nd_embedding) nd_pdists = [] pdists = [] for idx in xrange(embeddings.shape[0]): emb_idx = idx%self.ctx_num nd_embedding = nd_embedding_list[emb_idx] a_embedding = nd_embedding[idx] body = mx.nd.broadcast_sub(a_embedding, nd_embedding) body = body*body body = mx.nd.sum_axis(body, axis=1) nd_pdists.append(body) if len(nd_pdists)==self.ctx_num or idx==embeddings.shape[0]-1: for x in nd_pdists: pdists.append(x.asnumpy()) nd_pdists = [] return pdists
Example #6
Source File: sampler.py From training_results_v0.6 with Apache License 2.0 | 6 votes |
def draw(self, true_classes): """Draw samples from log uniform distribution and returns sampled candidates, expected count for true classes and sampled classes.""" range_max = self.range_max num_sampled = self.num_sampled ctx = true_classes.context log_range = math.log(range_max + 1) num_tries = 0 true_classes = true_classes.reshape((-1,)) sampled_classes, num_tries = self.sampler.sample_unique(num_sampled) true_cls = true_classes.as_in_context(ctx).astype('float64') prob_true = ((true_cls + 2.0) / (true_cls + 1.0)).log() / log_range count_true = self._prob_helper(num_tries, num_sampled, prob_true) sampled_classes = ndarray.array(sampled_classes, ctx=ctx, dtype='int64') sampled_cls_fp64 = sampled_classes.astype('float64') prob_sampled = ((sampled_cls_fp64 + 2.0) / (sampled_cls_fp64 + 1.0)).log() / log_range count_sampled = self._prob_helper(num_tries, num_sampled, prob_sampled) return [sampled_classes, count_true, count_sampled]
Example #7
Source File: data.py From 1.FaceRecognition with MIT License | 6 votes |
def next_sample(self): """Helper function for reading in next sample.""" if self.cur >= len(self.seq): raise StopIteration idx = self.seq[self.cur] self.cur += 1 uv_path = self.uv_file_list[idx] image_path = self.image_file_list[idx] uvmap = np.load(uv_path) img = cv2.imread(image_path)[:,:,::-1]#to rgb hlabel = uvmap #print(hlabel.shape) #hlabel = np.array(header.label).reshape( (self.output_label_size, self.output_label_size, self.num_classes) ) hlabel /= self.input_img_size return img, hlabel
Example #8
Source File: test_autograd.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_grad_with_stype(): def check_grad_with_stype(array_stype, grad_stype, expected_stype): x = mx.nd.zeros((1, 1), stype=array_stype) x.attach_grad(stype=grad_stype) # check grad attached assert x.grad.stype == expected_stype y = x.detach() # check array detached assert y.stype == array_stype stypes = ['default', 'csr', 'row_sparse'] for stype in stypes: # check the default stype of the gradient (same as the array stype) check_grad_with_stype(stype, None, stype) for grad_stype in stypes: # check the stype of the gradient when provided check_grad_with_stype(stype, grad_stype, grad_stype)
Example #9
Source File: face_detection.py From insightface with MIT License | 6 votes |
def generate_anchors_fpn(cfg): """ Generate anchor (reference) windows by enumerating aspect ratios X scales wrt a reference (0, 0, 15, 15) window. """ RPN_FEAT_STRIDE = [] for k in cfg: RPN_FEAT_STRIDE.append( int(k) ) RPN_FEAT_STRIDE = sorted(RPN_FEAT_STRIDE, reverse=True) anchors = [] for k in RPN_FEAT_STRIDE: v = cfg[str(k)] bs = v['BASE_SIZE'] __ratios = np.array(v['RATIOS']) __scales = np.array(v['SCALES']) stride = int(k) #print('anchors_fpn', bs, __ratios, __scales, file=sys.stderr) r = generate_anchors(bs, __ratios, __scales, stride) #print('anchors_fpn', r.shape, file=sys.stderr) anchors.append(r) return anchors
Example #10
Source File: data.py From insightface with MIT License | 6 votes |
def next_sample(self): """Helper function for reading in next sample.""" if self.cur >= len(self.seq): raise StopIteration idx = self.seq[self.cur] self.cur += 1 s = self.imgrec.read_idx(idx) header, img = recordio.unpack(s) img = mx.image.imdecode(img).asnumpy() hlabel = np.array(header.label).reshape( (self.num_classes,2) ) if not config.label_xfirst: hlabel = hlabel[:,::-1] #convert to X/W first annot = {'scale': config.base_scale} #ul = np.array( (50000,50000), dtype=np.int32) #br = np.array( (0,0), dtype=np.int32) #for i in range(hlabel.shape[0]): # h = int(hlabel[i][0]) # w = int(hlabel[i][1]) # key = np.array((h,w)) # ul = np.minimum(key, ul) # br = np.maximum(key, br) return img, hlabel, annot
Example #11
Source File: sampler.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def draw(self, true_classes): """Draw samples from log uniform distribution and returns sampled candidates, expected count for true classes and sampled classes.""" range_max = self.range_max num_sampled = self.num_sampled ctx = true_classes.context log_range = math.log(range_max + 1) num_tries = 0 true_classes = true_classes.reshape((-1,)) sampled_classes, num_tries = self.sampler.sample_unique(num_sampled) true_cls = true_classes.as_in_context(ctx).astype('float64') prob_true = ((true_cls + 2.0) / (true_cls + 1.0)).log() / log_range count_true = self._prob_helper(num_tries, num_sampled, prob_true) sampled_classes = ndarray.array(sampled_classes, ctx=ctx, dtype='int64') sampled_cls_fp64 = sampled_classes.astype('float64') prob_sampled = ((sampled_cls_fp64 + 2.0) / (sampled_cls_fp64 + 1.0)).log() / log_range count_sampled = self._prob_helper(num_tries, num_sampled, prob_sampled) return [sampled_classes, count_true, count_sampled]
Example #12
Source File: iterators.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def reset(self): """Resets the iterator to the beginning of the data.""" self.curr_idx = 0 #shuffle data in each bucket random.shuffle(self.idx) for i, buck in enumerate(self.sentences): self.indices[i], self.sentences[i], self.characters[i], self.label[i] = shuffle(self.indices[i], self.sentences[i], self.characters[i], self.label[i]) self.ndindex = [] self.ndsent = [] self.ndchar = [] self.ndlabel = [] #for each bucket of data for i, buck in enumerate(self.sentences): #append the lists with an array self.ndindex.append(ndarray.array(self.indices[i], dtype=self.dtype)) self.ndsent.append(ndarray.array(self.sentences[i], dtype=self.dtype)) self.ndchar.append(ndarray.array(self.characters[i], dtype=self.dtype)) self.ndlabel.append(ndarray.array(self.label[i], dtype=self.dtype))
Example #13
Source File: tensor.py From dgl with Apache License 2.0 | 6 votes |
def pad_packed_tensor(input, lengths, value, l_min=None): old_shape = input.shape if isinstance(lengths, nd.NDArray): max_len = as_scalar(input.max()) else: max_len = builtins.max(lengths) if l_min is not None: max_len = builtins.max(max_len, l_min) batch_size = len(lengths) ctx = input.context dtype = input.dtype x = nd.full((batch_size * max_len, *old_shape[1:]), value, ctx=ctx, dtype=dtype) index = [] for i, l in enumerate(lengths): index.extend(range(i * max_len, i * max_len + l)) index = nd.array(index, ctx=ctx) return scatter_row(x, index, input).reshape(batch_size, max_len, *old_shape[1:])
Example #14
Source File: data.py From 1.FaceRecognition with MIT License | 5 votes |
def compress_aug(self, img): buf = BytesIO() img = Image.fromarray(img.asnumpy(), 'RGB') q = random.randint(2, 20) img.save(buf, format='JPEG', quality=q) buf = buf.getvalue() img = Image.open(BytesIO(buf)) return nd.array(np.asarray(img, 'float32'))
Example #15
Source File: data.py From 1.FaceRecognition with MIT License | 5 votes |
def saturation_aug(self, src, x): alpha = 1.0 + random.uniform(-x, x) coef = nd.array([[[0.299, 0.587, 0.114]]]) gray = src * coef gray = nd.sum(gray, axis=2, keepdims=True) gray *= (1.0 - alpha) src *= alpha src += gray return src
Example #16
Source File: sync_loader_helper.py From gluon-cv with Apache License 2.0 | 5 votes |
def split_and_load(data, ctx_list, batch_axis=0, even_split=True, multiplier=1): """Splits an NDArray into `len(ctx_list)` slices along `batch_axis` and loads each slice to one context in `ctx_list`. Parameters ---------- data : NDArray A batch of data. ctx_list : list of Context A list of Contexts. batch_axis : int, default 0 The axis along which to slice. even_split : bool, default True Whether to force all slices to have the same number of elements. multiplier : int, default 1 The batch size has to be the multiples of channel multiplier. Need to investigate further. Returns ------- list of NDArray Each corresponds to a context in `ctx_list`. """ if not isinstance(data, ndarray.NDArray): data = ndarray.array(data, ctx=ctx_list[0]) if len(ctx_list) == 1: return [data.as_in_context(ctx_list[0])] slices = split_data(data, len(ctx_list), batch_axis, even_split, multiplier) return [i.as_in_context(ctx) for i, ctx in zip(slices, ctx_list)]
Example #17
Source File: data.py From 1.FaceRecognition with MIT License | 5 votes |
def contrast_aug(self, src, x): alpha = 1.0 + random.uniform(-x, x) coef = nd.array([[[0.299, 0.587, 0.114]]]) gray = src * coef gray = (3.0 * (1.0 - alpha) / gray.size) * nd.sum(gray) src *= alpha src += gray return src
Example #18
Source File: dqn_run_test.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def calculate_avg_q(samples, qnet): total_q = 0.0 for i in range(len(samples)): state = nd.array(samples[i:i + 1], ctx=qnet.ctx) / float(255.0) total_q += qnet.forward(is_train=False, data=state)[0].asnumpy().max(axis=1).sum() avg_q_score = total_q / float(len(samples)) return avg_q_score
Example #19
Source File: lstm_crf.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def _score_sentence(self, feats, tags): # Gives the score of a provided tag sequence score = nd.array([0]) tags = nd.concat(nd.array([self.tag2idx[START_TAG]]), *tags, dim=0) for i, feat in enumerate(feats): score = score + \ self.transitions.data()[to_scalar(tags[i+1]), to_scalar(tags[i])] + feat[to_scalar(tags[i+1])] score = score + self.transitions.data()[self.tag2idx[STOP_TAG], to_scalar(tags[int(tags.shape[0]-1)])] return score
Example #20
Source File: data.py From 1.FaceRecognition with MIT License | 5 votes |
def _pairwise_dists(self, embeddings): nd_embedding = mx.nd.array(embeddings, mx.gpu(0)) pdists = [] for idx in xrange(embeddings.shape[0]): a_embedding = nd_embedding[idx] body = mx.nd.broadcast_sub(a_embedding, nd_embedding) body = body*body body = mx.nd.sum_axis(body, axis=1) ret = body.asnumpy() #print(ret.shape) pdists.append(ret) return pdists
Example #21
Source File: lstm_crf.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def prepare_sequence(seq, word2idx): return nd.array([word2idx[w] for w in seq]) # Compute log sum exp is numerically more stable than multiplying probabilities
Example #22
Source File: gen_megaface.py From 1.FaceRecognition with MIT License | 5 votes |
def get_feature(imgs, nets): count = len(imgs) data = mx.nd.zeros(shape = (count*2, 3, imgs[0].shape[0], imgs[0].shape[1])) for idx, img in enumerate(imgs): img = img[:,:,::-1] #to rgb img = np.transpose( img, (2,0,1) ) for flipid in [0,1]: _img = np.copy(img) if flipid==1: _img = _img[:,:,::-1] _img = nd.array(_img) data[count*flipid+idx] = _img F = [] for net in nets: db = mx.io.DataBatch(data=(data,)) net.model.forward(db, is_train=False) x = net.model.get_outputs()[0].asnumpy() embedding = x[0:count,:] + x[count:,:] embedding = sklearn.preprocessing.normalize(embedding) #print('emb', embedding.shape) F.append(embedding) F = np.concatenate(F, axis=1) F = sklearn.preprocessing.normalize(F) #print('F', F.shape) return F
Example #23
Source File: algos.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def SGD(sym, data_inputs, X, Y, X_test, Y_test, total_iter_num, lr=None, lr_scheduler=None, prior_precision=1, out_grad_f=None, initializer=None, minibatch_size=100, dev=mx.gpu()): if out_grad_f is None: label_key = list(set(data_inputs.keys()) - set(['data']))[0] exe, params, params_grad, _ = get_executor(sym, dev, data_inputs, initializer) optimizer = mx.optimizer.create('sgd', learning_rate=lr, rescale_grad=X.shape[0] / minibatch_size, lr_scheduler=lr_scheduler, wd=prior_precision) updater = mx.optimizer.get_updater(optimizer) start = time.time() for i in range(total_iter_num): indices = numpy.random.randint(X.shape[0], size=minibatch_size) X_batch = X[indices] Y_batch = Y[indices] exe.arg_dict['data'][:] = X_batch if out_grad_f is None: exe.arg_dict[label_key][:] = Y_batch exe.forward(is_train=True) exe.backward() else: exe.forward(is_train=True) exe.backward(out_grad_f(exe.outputs, nd.array(Y_batch, ctx=dev))) for k in params: updater(k, params_grad[k], params[k]) if (i + 1) % 500 == 0: end = time.time() print("Current Iter Num: %d" % (i + 1), "Time Spent: %f" % (end - start)) sample_test_acc(exe, X=X_test, Y=Y_test, label_num=10, minibatch_size=100) start = time.time() return exe, params, params_grad
Example #24
Source File: tensor.py From dgl with Apache License 2.0 | 5 votes |
def nonzero_1d(input): # TODO: fallback to numpy is unfortunate tmp = input.asnumpy() tmp = np.nonzero(tmp)[0] return nd.array(tmp, ctx=input.context, dtype=input.dtype)
Example #25
Source File: segmentation.py From gluon-cv with Apache License 2.0 | 5 votes |
def _mask_transform(self, mask): target = np.array(mask).astype('int32') target[target == 255] = -1 return F.array(target, cpu(0))
Example #26
Source File: segbase.py From gluon-cv with Apache License 2.0 | 5 votes |
def _mask_transform(self, mask): return F.array(np.array(mask), cpu(0)).astype('int32')
Example #27
Source File: segbase.py From gluon-cv with Apache License 2.0 | 5 votes |
def _img_transform(self, img): return F.array(np.array(img), cpu(0))
Example #28
Source File: tensor_models.py From dgl with Apache License 2.0 | 5 votes |
def load(self, path, name): """Load embeddings. Parameters ---------- path : str Directory to load the embedding. name : str Embedding name. """ emb_fname = os.path.join(path, name+'.npy') self.emb = nd.array(np.load(emb_fname))
Example #29
Source File: __init__.py From dgl with Apache License 2.0 | 5 votes |
def is_cuda_available(): # TODO: Does MXNet have a convenient function to test GPU availability/compilation? try: a = nd.array([1, 2, 3], ctx=mx.gpu()) return True except mx.MXNetError: return False
Example #30
Source File: tensor.py From dgl with Apache License 2.0 | 5 votes |
def tensor(data, dtype=None): # MXNet always returns a float tensor regardless of type inside data. # This is a workaround. if dtype is None: if isinstance(data[0], numbers.Integral): dtype = np.int64 else: dtype = np.float32 return nd.array(data, dtype=dtype)