Python mxnet.ndarray.argmax() Examples
The following are 17
code examples of mxnet.ndarray.argmax().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mxnet.ndarray
, or try the search function
.
Example #1
Source File: accuracy.py From gluon-cv with Apache License 2.0 | 6 votes |
def update(self, labels, preds): """Updates the internal evaluation result. Parameters ---------- labels : list of `NDArray` The labels of the data with class indices as values, one per sample. preds : list of `NDArray` Prediction values for samples. Each prediction value can either be the class index, or a vector of likelihoods for all classes. """ labels, preds = check_label_shapes(labels, preds, True) for label, pred_label in zip(labels, preds): if pred_label.shape != label.shape: pred_label = ndarray.argmax(pred_label, axis=self.axis) pred_label = pred_label.asnumpy().astype('int32') label = label.asnumpy().astype('int32') labels, preds = check_label_shapes(label, pred_label) valid = (labels.reshape(-1, 1) != self.ignore_labels).all(axis=-1) self.sum_metric += np.logical_and(pred_label.flat == label.flat, valid).sum() self.num_inst += np.sum(valid)
Example #2
Source File: accuracy.py From panoptic-fpn-gluon with Apache License 2.0 | 6 votes |
def update(self, labels, preds): """Updates the internal evaluation result. Parameters ---------- labels : list of `NDArray` The labels of the data with class indices as values, one per sample. preds : list of `NDArray` Prediction values for samples. Each prediction value can either be the class index, or a vector of likelihoods for all classes. """ labels, preds = check_label_shapes(labels, preds, True) for label, pred_label in zip(labels, preds): if pred_label.shape != label.shape: pred_label = ndarray.argmax(pred_label, axis=self.axis) pred_label = pred_label.asnumpy().astype('int32') label = label.asnumpy().astype('int32') labels, preds = check_label_shapes(label, pred_label) valid = (labels.reshape(-1, 1) != self.ignore_labels).all(axis=-1) self.sum_metric += np.logical_and(pred_label.flat == label.flat, valid).sum() self.num_inst += np.sum(valid)
Example #3
Source File: test_gluon_model_export.py From mlflow with Apache License 2.0 | 6 votes |
def test_model_save_load(gluon_model, model_data, model_path): _, _, test_data = model_data expected = nd.argmax(gluon_model(test_data), axis=1) mlflow.gluon.save_model(gluon_model, model_path) # Loading Gluon model model_loaded = mlflow.gluon.load_model(model_path, ctx.cpu()) actual = nd.argmax(model_loaded(test_data), axis=1) assert all(expected == actual) # Loading pyfunc model pyfunc_loaded = mlflow.pyfunc.load_model(model_path) test_pyfunc_data = pd.DataFrame(test_data.asnumpy()) pyfunc_preds = pyfunc_loaded.predict(test_pyfunc_data) assert all( np.argmax(pyfunc_preds.values, axis=1) == expected.asnumpy())
Example #4
Source File: test_gluon_model_export.py From mlflow with Apache License 2.0 | 6 votes |
def test_model_log_load(gluon_model, model_data, model_path): _, _, test_data = model_data expected = nd.argmax(gluon_model(test_data), axis=1) artifact_path = "model" with mlflow.start_run(): mlflow.gluon.log_model(gluon_model, artifact_path=artifact_path) model_uri = "runs:/{run_id}/{artifact_path}".format( run_id=mlflow.active_run().info.run_id, artifact_path=artifact_path) # Loading Gluon model model_loaded = mlflow.gluon.load_model(model_uri, ctx.cpu()) actual = nd.argmax(model_loaded(test_data), axis=1) assert all(expected == actual) # Loading pyfunc model pyfunc_loaded = mlflow.pyfunc.load_model(model_uri) test_pyfunc_data = pd.DataFrame(test_data.asnumpy()) pyfunc_preds = pyfunc_loaded.predict(test_pyfunc_data) assert all( np.argmax(pyfunc_preds.values, axis=1) == expected.asnumpy())
Example #5
Source File: test_gluon_model_export.py From mlflow with Apache License 2.0 | 6 votes |
def test_gluon_model_serving_and_scoring_as_pyfunc(gluon_model, model_data): _, _, test_data = model_data expected = nd.argmax(gluon_model(test_data), axis=1) artifact_path = "model" with mlflow.start_run(): mlflow.gluon.log_model(gluon_model, artifact_path=artifact_path) model_uri = "runs:/{run_id}/{artifact_path}".format( run_id=mlflow.active_run().info.run_id, artifact_path=artifact_path) scoring_response = pyfunc_serve_and_score_model( model_uri=model_uri, data=pd.DataFrame(test_data.asnumpy()), content_type=pyfunc_scoring_server.CONTENT_TYPE_JSON_SPLIT_ORIENTED) response_values = \ pd.read_json(scoring_response.content, orient="records").values.astype(np.float32) assert all( np.argmax(response_values, axis=1) == expected.asnumpy())
Example #6
Source File: accuracy.py From cascade_rcnn_gluon with Apache License 2.0 | 6 votes |
def update(self, labels, preds): """Updates the internal evaluation result. Parameters ---------- labels : list of `NDArray` The labels of the data with class indices as values, one per sample. preds : list of `NDArray` Prediction values for samples. Each prediction value can either be the class index, or a vector of likelihoods for all classes. """ labels, preds = check_label_shapes(labels, preds, True) for label, pred_label in zip(labels, preds): if pred_label.shape != label.shape: pred_label = ndarray.argmax(pred_label, axis=self.axis) pred_label = pred_label.asnumpy().astype('int32') label = label.asnumpy().astype('int32') labels, preds = check_label_shapes(label, pred_label) valid = (labels.reshape(-1, 1) != self.ignore_labels).all(axis=-1) self.sum_metric += np.logical_and(pred_label.flat == label.flat, valid).sum() self.num_inst += np.sum(valid)
Example #7
Source File: voc_segmentation.py From cascade_rcnn_gluon with Apache License 2.0 | 6 votes |
def batch_intersection_union(output, target, nclass): """mIoU""" # inputs are NDarray, output 4D, target 3D predict = F.argmax(output, 1) target = target.astype(predict.dtype) mini = 1 maxi = nclass nbins = nclass predict = predict.asnumpy() + 1 target = target.asnumpy() + 1 predict = predict * (target > 0).astype(predict.dtype) #intersection = predict * (F.equal(predict, target)).astype(predict.dtype) intersection = predict * (predict == target) # areas of intersection and union area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi)) area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi)) area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi)) area_union = area_pred + area_lab - area_inter return area_inter, area_union
Example #8
Source File: lstm_crf.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def _viterbi_decode(self, feats): backpointers = [] # Initialize the viterbi variables in log space vvars = nd.full((1, self.tagset_size), -10000.) vvars[0, self.tag2idx[START_TAG]] = 0 for feat in feats: bptrs_t = [] # holds the backpointers for this step viterbivars_t = [] # holds the viterbi variables for this step for next_tag in range(self.tagset_size): # next_tag_var[i] holds the viterbi variable for tag i at the # previous step, plus the score of transitioning # from tag i to next_tag. # We don't include the emission scores here because the max # does not depend on them (we add them in below) next_tag_var = vvars + self.transitions[next_tag] best_tag_id = argmax(next_tag_var) bptrs_t.append(best_tag_id) viterbivars_t.append(next_tag_var[0, best_tag_id]) # Now add in the emission scores, and assign vvars to the set # of viterbi variables we just computed vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1)) backpointers.append(bptrs_t) # Transition to STOP_TAG terminal_var = vvars + self.transitions[self.tag2idx[STOP_TAG]] best_tag_id = argmax(terminal_var) path_score = terminal_var[0, best_tag_id] # Follow the back pointers to decode the best path. best_path = [best_tag_id] for bptrs_t in reversed(backpointers): best_tag_id = bptrs_t[best_tag_id] best_path.append(best_tag_id) # Pop off the start tag (we dont want to return that to the caller) start = best_path.pop() assert start == self.tag2idx[START_TAG] # Sanity check best_path.reverse() return path_score, best_path
Example #9
Source File: lstm_crf.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def argmax(vec): # return the argmax as a python int idx = nd.argmax(vec, axis=1) return to_scalar(idx)
Example #10
Source File: lstm_crf.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def argmax(vec): # return the argmax as a python int idx = nd.argmax(vec, axis=1) return to_scalar(idx)
Example #11
Source File: model.py From NER_BiLSTM_CRF_Chinese with Apache License 2.0 | 5 votes |
def _viterbi_decode(self, feats): backpointers = [] vvars = nd.full((1, self.tagset_size), -10000.,ctx=self.ctx) vvars[0, self.tag2idx[self.START_TAG]] = 0 for feat in feats: bptrs_t = [] viterbivars_t = [] for next_tag in range(self.tagset_size): next_tag_var = vvars + self.transitions[next_tag] best_tag_id = argmax(next_tag_var) bptrs_t.append(best_tag_id) viterbivars_t.append(next_tag_var[0, best_tag_id]) vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1)) backpointers.append(bptrs_t) terminal_var = vvars + self.transitions[self.tag2idx[self.STOP_TAG]] best_tag_id = argmax(terminal_var) path_score = terminal_var[0, best_tag_id] best_path = [best_tag_id] for bptrs_t in reversed(backpointers): best_tag_id = bptrs_t[best_tag_id] best_path.append(best_tag_id) start = best_path.pop() assert start == self.tag2idx[self.START_TAG] best_path.reverse() return path_score, best_path
Example #12
Source File: model.py From NER_BiLSTM_CRF_Chinese with Apache License 2.0 | 5 votes |
def argmax(vec): idx = nd.argmax(vec, axis=1) return to_scalar(idx)
Example #13
Source File: voc_segmentation.py From cascade_rcnn_gluon with Apache License 2.0 | 5 votes |
def batch_pix_accuracy(output, target): """PixAcc""" # inputs are NDarray, output 4D, target 3D predict = F.argmax(output, 1) predict = predict.asnumpy() + 1 target = target.asnumpy().astype(predict.dtype) + 1 pixel_labeled = np.sum(target > 0) pixel_correct = np.sum((predict == target)*(target > 0)) assert pixel_correct <= pixel_labeled, "Correct area should be smaller than Labeled" return pixel_correct, pixel_labeled
Example #14
Source File: bnn_repurposer.py From xfer with Apache License 2.0 | 5 votes |
def _evaluate_accuracy(self, data_iterator, net, layer_params): numerator = 0. denominator = 0. for i, (data, label) in enumerate(data_iterator): data = data.as_in_context(self._context_bnn).reshape((-1, data.shape[1])) label = label.as_in_context(self._context_bnn) replace_params_net(layer_params, net, self._context_bnn) output = net(data) predictions = nd.argmax(output, axis=1) numerator += nd.sum(predictions == label) denominator += data.shape[0] return (numerator / denominator).asscalar()
Example #15
Source File: lstm_crf.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def _viterbi_decode(self, feats): backpointers = [] # Initialize the viterbi variables in log space vvars = nd.full((1, self.tagset_size), -10000.) vvars[0, self.tag2idx[START_TAG]] = 0 for feat in feats: bptrs_t = [] # holds the backpointers for this step viterbivars_t = [] # holds the viterbi variables for this step for next_tag in range(self.tagset_size): # next_tag_var[i] holds the viterbi variable for tag i at the # previous step, plus the score of transitioning # from tag i to next_tag. # We don't include the emission scores here because the max # does not depend on them (we add them in below) next_tag_var = vvars + self.transitions.data()[next_tag] best_tag_id = argmax(next_tag_var) bptrs_t.append(best_tag_id) viterbivars_t.append(next_tag_var[0, best_tag_id]) # Now add in the emission scores, and assign vvars to the set # of viterbi variables we just computed vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1)) backpointers.append(bptrs_t) # Transition to STOP_TAG terminal_var = vvars + self.transitions.data()[self.tag2idx[STOP_TAG]] best_tag_id = argmax(terminal_var) path_score = terminal_var[0, best_tag_id] # Follow the back pointers to decode the best path. best_path = [best_tag_id] for bptrs_t in reversed(backpointers): best_tag_id = bptrs_t[best_tag_id] best_path.append(best_tag_id) # Pop off the start tag (we dont want to return that to the caller) start = best_path.pop() assert start == self.tag2idx[START_TAG] # Sanity check best_path.reverse() return path_score, best_path
Example #16
Source File: lstm_crf.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def argmax(vec): # return the argmax as a python int idx = nd.argmax(vec, axis=1) return to_scalar(idx)
Example #17
Source File: lstm_crf.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def _viterbi_decode(self, feats): backpointers = [] # Initialize the viterbi variables in log space vvars = nd.full((1, self.tagset_size), -10000.) vvars[0, self.tag2idx[START_TAG]] = 0 for feat in feats: bptrs_t = [] # holds the backpointers for this step viterbivars_t = [] # holds the viterbi variables for this step for next_tag in range(self.tagset_size): # next_tag_var[i] holds the viterbi variable for tag i at the # previous step, plus the score of transitioning # from tag i to next_tag. # We don't include the emission scores here because the max # does not depend on them (we add them in below) next_tag_var = vvars + self.transitions.data()[next_tag] best_tag_id = argmax(next_tag_var) bptrs_t.append(best_tag_id) viterbivars_t.append(next_tag_var[0, best_tag_id]) # Now add in the emission scores, and assign vvars to the set # of viterbi variables we just computed vvars = (nd.concat(*viterbivars_t, dim=0) + feat).reshape((1, -1)) backpointers.append(bptrs_t) # Transition to STOP_TAG terminal_var = vvars + self.transitions.data()[self.tag2idx[STOP_TAG]] best_tag_id = argmax(terminal_var) path_score = terminal_var[0, best_tag_id] # Follow the back pointers to decode the best path. best_path = [best_tag_id] for bptrs_t in reversed(backpointers): best_tag_id = bptrs_t[best_tag_id] best_path.append(best_tag_id) # Pop off the start tag (we dont want to return that to the caller) start = best_path.pop() assert start == self.tag2idx[START_TAG] # Sanity check best_path.reverse() return path_score, best_path