Python mxnet.ndarray.ones() Examples
The following are 30
code examples of mxnet.ndarray.ones().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mxnet.ndarray
, or try the search function
.
Example #1
Source File: test_autograd.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def test_binary_func(): def check_binary_func(x, y): f_add = lambda x, y: x+y f_add_grad = lambda x, y: [nd.ones(x.shape), nd.ones(y.shape)] autograd_assert(x, y, func=f_add, grad_func=f_add_grad) f_mul = lambda x, y: x*y f_mul_grad = lambda x, y: [y, x] autograd_assert(x, y, func=f_mul, grad_func=f_mul_grad) f_compose = lambda x, y: x+x*y f_compose_grad = lambda x, y: [nd.ones(x.shape) + y, x] autograd_assert(x, y, func=f_compose, grad_func=f_compose_grad) uniform_x = nd.uniform(shape=(4, 5)) uniform_y = nd.uniform(shape=(4, 5)) stypes = ['default', 'row_sparse', 'csr'] for stype_x in stypes: for stype_y in stypes: x = uniform_x.tostype(stype_x) y = uniform_y.tostype(stype_y) check_binary_func(x, y)
Example #2
Source File: test_autograd.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def test_sparse_dot_grad(): def check_sparse_dot_grad(rhs): lhs = rand_ndarray((2, 8), 'csr') with mx.autograd.record(): y = mx.nd.dot(lhs, rhs) y.backward() grad = rhs.grad grad_np = np.dot(lhs.asnumpy().T, np.ones((lhs.shape[0], rhs.shape[1]))) assert grad.stype == 'row_sparse' assert_almost_equal(grad.asnumpy(), grad_np) # check grad with row_sparse weight shape = (8, 3) rsp = mx.nd.ones(shape).tostype('row_sparse') rsp.attach_grad() check_sparse_dot_grad(rsp) # check grad with dense weight dns = mx.nd.ones(shape) dns.attach_grad(stype='row_sparse') check_sparse_dot_grad(dns)
Example #3
Source File: test_module.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_forward_types(): #Test forward with other data batch API Batch = namedtuple('Batch', ['data']) data = mx.sym.Variable('data') out = data * 2 mod = mx.mod.Module(symbol=out, label_names=None) mod.bind(data_shapes=[('data', (1, 10))]) mod.init_params() data1 = [mx.nd.ones((1, 10))] mod.forward(Batch(data1)) assert mod.get_outputs()[0].shape == (1, 10) data2 = [mx.nd.ones((3, 5))] mod.forward(Batch(data2)) assert mod.get_outputs()[0].shape == (3, 5) #Test forward with other NDArray and np.ndarray inputs data = mx.sym.Variable('data') out = data * 2 mod = mx.mod.Module(symbol=out, label_names=None) mod.bind(data_shapes=[('data', (1, 10))]) mod.init_params() data1 = mx.nd.ones((1, 10)) assert mod.predict(data1).shape == (1, 10) data2 = np.ones((1, 10)) assert mod.predict(data1).shape == (1, 10)
Example #4
Source File: test_module.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_module_reshape(): data = mx.sym.Variable('data') sym = mx.sym.FullyConnected(data, num_hidden=20, name='fc') dshape = (7, 20) mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)]) mod.bind(data_shapes=[('data', dshape)]) mod.init_params() mod.init_optimizer(optimizer_params={'learning_rate': 1}) mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)], label=None)) mod.backward([mx.nd.ones(dshape)]) mod.update() assert mod.get_outputs()[0].shape == dshape assert (mod.get_params()[0]['fc_bias'].asnumpy() == -1).all() dshape = (14, 20) mod.reshape(data_shapes=[('data', dshape)]) mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)], label=None)) mod.backward([mx.nd.ones(dshape)]) mod.update() assert mod.get_outputs()[0].shape == dshape assert (mod.get_params()[0]['fc_bias'].asnumpy() == -3).all()
Example #5
Source File: test_module.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_module_layout(): sym = mx.sym.Variable('data') sym = mx.sym.Activation(data=sym, act_type='relu', __layout__='TNC') dshape = (3, 8, 7) mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)]) mod.bind(data_shapes=[mx.io.DataDesc('data', dshape, layout='TNC')]) mod.init_params() mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)], label=None)) mod.backward([mx.nd.ones(dshape)]) assert mod.get_outputs()[0].shape == dshape hdshape = (3, 4, 7) for x in mod.get_outputs(merge_multi_context=False)[0]: assert x.shape == hdshape
Example #6
Source File: test_module.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_module_input_grads(): a = mx.sym.Variable('a', __layout__='NC') b = mx.sym.Variable('b', __layout__='NC') c = mx.sym.Variable('c', __layout__='NC') c = a + 2 * b + 3 * c net = mx.mod.Module(c, data_names=['b', 'c', 'a'], label_names=None, context=[mx.cpu(0), mx.cpu(1)]) net.bind(data_shapes=[['b', (5, 5)], ['c', (5, 5)], ['a', (5, 5)]], label_shapes=None, inputs_need_grad=True) net.init_params() net.forward(data_batch=mx.io.DataBatch(data=[nd.ones((5, 5)), nd.ones((5, 5)), nd.ones((5, 5))])) net.backward(out_grads=[nd.ones((5, 5))]) input_grads = net.get_input_grads() b_grad = input_grads[0].asnumpy() c_grad = input_grads[1].asnumpy() a_grad = input_grads[2].asnumpy() assert np.all(a_grad == 1), a_grad assert np.all(b_grad == 2), b_grad assert np.all(c_grad == 3), c_grad
Example #7
Source File: test_module.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_module_dtype(): dtype = np.float16 dshape = (3, 8, 7) sym = mx.sym.Variable('data') sym = mx.sym.Activation(data=sym, act_type='relu', __layout__='TNC') mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)]) mod.bind(data_shapes=[mx.io.DataDesc('data', dshape, dtype, layout='TNC')]) mod.init_params() mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape, dtype=dtype)], label=None)) mod.backward([mx.nd.ones(dshape, dtype=dtype)]) for x in mod.get_outputs(): assert x.dtype == dtype
Example #8
Source File: test_module.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def test_module_dtype(): dtype = np.float16 dshape = (3, 8, 7) sym = mx.sym.Variable('data') sym = mx.sym.Activation(data=sym, act_type='relu', __layout__='TNC') mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)]) mod.bind(data_shapes=[mx.io.DataDesc('data', dshape, dtype, layout='TNC')]) mod.init_params() mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape, dtype=dtype)], label=None)) mod.backward([mx.nd.ones(dshape, dtype=dtype)]) for x in mod.get_outputs(): assert x.dtype == dtype
Example #9
Source File: test_autograd.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_sparse_dot_grad(): def check_sparse_dot_grad(rhs): lhs = rand_ndarray((2, 8), 'csr') with mx.autograd.record(): y = mx.nd.dot(lhs, rhs) y.backward() grad = rhs.grad grad_np = np.dot(lhs.asnumpy().T, np.ones((lhs.shape[0], rhs.shape[1]))) assert grad.stype == 'row_sparse' assert_almost_equal(grad.asnumpy(), grad_np) # check grad with row_sparse weight shape = (8, 3) rsp = mx.nd.ones(shape).tostype('row_sparse') rsp.attach_grad() check_sparse_dot_grad(rsp) # check grad with dense weight dns = mx.nd.ones(shape) dns.attach_grad(stype='row_sparse') check_sparse_dot_grad(dns)
Example #10
Source File: test_module.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def test_module_input_grads(): a = mx.sym.Variable('a', __layout__='NC') b = mx.sym.Variable('b', __layout__='NC') c = mx.sym.Variable('c', __layout__='NC') c = a + 2 * b + 3 * c net = mx.mod.Module(c, data_names=['b', 'c', 'a'], label_names=None, context=[mx.cpu(0), mx.cpu(1)]) net.bind(data_shapes=[['b', (5, 5)], ['c', (5, 5)], ['a', (5, 5)]], label_shapes=None, inputs_need_grad=True) net.init_params() net.forward(data_batch=mx.io.DataBatch(data=[nd.ones((5, 5)), nd.ones((5, 5)), nd.ones((5, 5))])) net.backward(out_grads=[nd.ones((5, 5))]) input_grads = net.get_input_grads() b_grad = input_grads[0].asnumpy() c_grad = input_grads[1].asnumpy() a_grad = input_grads[2].asnumpy() assert np.all(a_grad == 1), a_grad assert np.all(b_grad == 2), b_grad assert np.all(c_grad == 3), c_grad
Example #11
Source File: test_module.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def test_module_layout(): sym = mx.sym.Variable('data') sym = mx.sym.Activation(data=sym, act_type='relu', __layout__='TNC') dshape = (3, 8, 7) mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)]) mod.bind(data_shapes=[mx.io.DataDesc('data', dshape, layout='TNC')]) mod.init_params() mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)], label=None)) mod.backward([mx.nd.ones(dshape)]) assert mod.get_outputs()[0].shape == dshape hdshape = (3, 4, 7) for x in mod.get_outputs(merge_multi_context=False)[0]: assert x.shape == hdshape
Example #12
Source File: test_autograd.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_out_grads(): x = nd.ones((3, 5)) dx = nd.zeros_like(x) mark_variables([x], [dx]) da = None db = nd.array([1,2,3,4,5]) dc = nd.array([5,4,3,2,1]) with record(): a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True) backward([a, b, c], [da, db, dc]) assert (dx.asnumpy() == np.array( [[1,1,1,1,1], [1,2,3,4,5], [5,4,3,2,1]])).all()
Example #13
Source File: test_module.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def test_module_reshape(): data = mx.sym.Variable('data') sym = mx.sym.FullyConnected(data, num_hidden=20, name='fc') dshape = (7, 20) mod = mx.mod.Module(sym, ('data',), None, context=[mx.cpu(0), mx.cpu(1)]) mod.bind(data_shapes=[('data', dshape)]) mod.init_params() mod.init_optimizer(optimizer_params={'learning_rate': 1}) mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)], label=None)) mod.backward([mx.nd.ones(dshape)]) mod.update() assert mod.get_outputs()[0].shape == dshape assert (mod.get_params()[0]['fc_bias'].asnumpy() == -1).all() dshape = (14, 20) mod.reshape(data_shapes=[('data', dshape)]) mod.forward(mx.io.DataBatch(data=[mx.nd.ones(dshape)], label=None)) mod.backward([mx.nd.ones(dshape)]) mod.update() assert mod.get_outputs()[0].shape == dshape assert (mod.get_params()[0]['fc_bias'].asnumpy() == -3).all()
Example #14
Source File: test_contrib_autograd.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_out_grads(): x = nd.ones((3, 5)) dx = nd.zeros_like(x) mark_variables([x], [dx]) da = None db = nd.array([1,2,3,4,5]) dc = nd.array([5,4,3,2,1]) with train_section(): a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True) backward([a, b, c], [da, db, dc]) assert (dx.asnumpy() == np.array( [[1,1,1,1,1], [1,2,3,4,5], [5,4,3,2,1]])).all()
Example #15
Source File: tensor.py From dgl with Apache License 2.0 | 6 votes |
def unsorted_1d_segment_sum(input, seg_id, n_segs, dim): # TODO: support other dimensions assert dim == 0, 'MXNet only supports segment sum on first dimension' # Use SPMV to simulate segment sum ctx = input.context n_inputs = input.shape[0] input_shape_suffix = input.shape[1:] input = input.reshape(n_inputs, -1) n_range = nd.arange(n_inputs, dtype='int64').as_in_context(input.context) w_nnz = nd.ones(n_inputs).as_in_context(input.context) w_nid = nd.stack(seg_id, n_range, axis=0) w = nd.sparse.csr_matrix((w_nnz, (seg_id, n_range)), (n_segs, n_inputs)) w = w.as_in_context(input.context) y = nd.dot(w, input) y = nd.reshape(y, (n_segs,) + input_shape_suffix) return y
Example #16
Source File: test_contrib_autograd.py From SNIPER-mxnet with Apache License 2.0 | 6 votes |
def test_out_grads(): x = nd.ones((3, 5)) dx = nd.zeros_like(x) mark_variables([x], [dx]) da = None db = nd.array([1,2,3,4,5]) dc = nd.array([5,4,3,2,1]) with train_section(): a, b, c = nd.split(x, axis=0, num_outputs=3, squeeze_axis=True) backward([a, b, c], [da, db, dc]) assert (dx.asnumpy() == np.array( [[1,1,1,1,1], [1,2,3,4,5], [5,4,3,2,1]])).all()
Example #17
Source File: test_contrib_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def test_detach_updated_grad(): x = nd.ones((2, 2)) dx = nd.zeros_like(x) y = nd.ones_like(x) dy = nd.zeros_like(x) mark_variables([x, y], [dx, dy]) assert x._fresh_grad == False assert y._fresh_grad == False with train_section(): x2 = x + 2 y2 = x2 + y y2.backward() assert (dx.asnumpy() == 1).all() assert x._fresh_grad == True assert y._fresh_grad == True dx[:] = 0 x._fresh_grad = False y._fresh_grad = False assert x._fresh_grad == False assert y._fresh_grad == False with train_section(): x2 = x + 2 x2 = x2.detach() y2 = x2 + y y2.backward() assert (dx.asnumpy() == 0).all() assert y._fresh_grad == True assert x._fresh_grad == False
Example #18
Source File: test_contrib_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def test_training(): x = nd.ones((10, 10)) with train_section(): y = nd.Dropout(x, p=0.5) assert not (y.asnumpy() == x.asnumpy()).all() with test_section(): y = nd.Dropout(x, p=0.5) assert (y.asnumpy() == x.asnumpy()).all()
Example #19
Source File: test_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def test_detach_updated_grad(): x = nd.ones((2, 2)) dx = nd.zeros_like(x) y = nd.ones_like(x) dy = nd.zeros_like(x) mark_variables([x, y], [dx, dy]) assert x._fresh_grad == False assert y._fresh_grad == False with record(): x2 = x + 2 y2 = x2 + y y2.backward() assert (dx.asnumpy() == 1).all() assert x._fresh_grad == True assert y._fresh_grad == True dx[:] = 0 x._fresh_grad = False y._fresh_grad = False assert x._fresh_grad == False assert y._fresh_grad == False with record(): x2 = x + 2 x2 = x2.detach() y2 = x2 + y y2.backward() assert (dx.asnumpy() == 0).all() assert y._fresh_grad == True assert x._fresh_grad == False
Example #20
Source File: test_contrib_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def test_argnum(): def f_with_mode(a, b, mode): if mode: return a+b else: return a*b a = nd.uniform(shape=(3, 2)) b = nd.uniform(shape=(3, 2)) f_add_grad = lambda x, y, mode: [nd.ones(x.shape), nd.ones(y.shape)] f_mul_grad = lambda x, y, mode: [y, x] autograd_assert(a, b, True, argnum=[0, 1], func=f_with_mode, grad_func=f_add_grad) autograd_assert(a, b, False, argnum=[0, 1], func=f_with_mode, grad_func=f_mul_grad)
Example #21
Source File: test_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def test_get_symbol(): x = mx.nd.ones((1,)) x.attach_grad() with record(): y = x*x + 2*x - 1 assert len(get_symbol(y).list_arguments()) == 1 z = mx.nd.ones((1,)) z.attach_grad() with record(): y = x*x + 2*z - 1 assert len(get_symbol(y).list_arguments()) == 2
Example #22
Source File: test_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def test_retain_grad(): x = mx.nd.ones((2, 2)) dx = mx.nd.zeros((2, 2)) mark_variables([x], [dx], grad_reqs='add') with record(): y = x + 1 y.backward(retain_graph=False) assert (dx.asnumpy() == 1).all() dx[:] = 0 with record(): y = x + 1 y.backward(retain_graph=True) y.backward(retain_graph=False) assert (dx.asnumpy() == 2).all() # The following sequence should throw an exception. We discard the expected # stderr stack trace output for this operation to keep the test logs clean. with discard_stderr(): try: with record(): y = x + 1 y.backward() y.backward() except Exception: return raise AssertionError( "differentiating the same graph twice without retain_graph should fail")
Example #23
Source File: train_cgan.py From gluon-cv with Apache License 2.0 | 5 votes |
def gan_loss(input,target_is_real): if target_is_real: target = nd.ones(input.shape,ctx=input.context) else: target = nd.zeros(input.shape, ctx=input.context) #mse loss for lsgan e = ((input - target) ** 2).mean(axis=0, exclude=True) return e
Example #24
Source File: test_contrib_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def test_binary_func(): x = nd.uniform(shape=(4, 5)) y = nd.uniform(shape=(4, 5)) f_add = lambda x, y: x+y f_add_grad = lambda x, y: [nd.ones(x.shape), nd.ones(y.shape)] autograd_assert(x, y, func=f_add, grad_func=f_add_grad) f_mul = lambda x, y: x*y f_mul_grad = lambda x, y: [y, x] autograd_assert(x, y, func=f_mul, grad_func=f_mul_grad) f_compose = lambda x, y: x+x*y f_compose_grad = lambda x, y: [nd.ones(x.shape) + y, x] autograd_assert(x, y, func=f_compose, grad_func=f_compose_grad)
Example #25
Source File: test_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def test_training(): x = nd.ones((10, 10)) with record(): y = nd.Dropout(x, p=0.5) assert not (y.asnumpy() == x.asnumpy()).all() with pause(): y = nd.Dropout(x, p=0.5) assert (y.asnumpy() == x.asnumpy()).all()
Example #26
Source File: test_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def test_argnum(): def f_with_mode(a, b, mode): if mode: return a+b else: return a*b a = nd.uniform(shape=(3, 2)) b = nd.uniform(shape=(3, 2)) f_add_grad = lambda x, y, mode: [nd.ones(x.shape), nd.ones(y.shape)] f_mul_grad = lambda x, y, mode: [y, x] autograd_assert(a, b, True, argnum=[0, 1], func=f_with_mode, grad_func=f_add_grad) autograd_assert(a, b, False, argnum=[0, 1], func=f_with_mode, grad_func=f_mul_grad)
Example #27
Source File: test_autograd.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def test_unary_func(): def check_unary_func(x): f_exp = lambda x: nd.exp(x) f_exp_grad = lambda x: [nd.exp(x)] autograd_assert(x, func=f_exp, grad_func=f_exp_grad) f_half = lambda x: x/2 f_half_grad = lambda x: [nd.ones(x.shape) * 0.5] autograd_assert(x, func=f_half, grad_func=f_half_grad) f_square = lambda x: x**2 f_square_grad = lambda x: [2*x] autograd_assert(x, func=f_square, grad_func=f_square_grad) uniform = nd.uniform(shape=(4, 5)) stypes = ['default', 'row_sparse', 'csr'] for stype in stypes: check_unary_func(uniform.tostype(stype))
Example #28
Source File: MxnetA.py From nn_tools with MIT License | 5 votes |
def profiling_symbol(symbol,data_shape,data_name='data'): monitor = Monitor() model=mx.mod.Module(symbol) model.bind(data_shapes=[(data_name,tuple(data_shape))]) model.install_monitor(monitor) model.init_params() monitor.tic() model.forward(mx.io.DataBatch(data=(nd.ones(data_shape),))) data_infos=monitor.toc() module_json=symbol.tojson() analyse(data_infos,module_json,data_name)
Example #29
Source File: train_cgan.py From panoptic-fpn-gluon with Apache License 2.0 | 5 votes |
def gan_loss(input,target_is_real): if target_is_real: target = nd.ones(input.shape,ctx=input.context) else: target = nd.zeros(input.shape, ctx=input.context) #mse loss for lsgan e = ((input - target) ** 2).mean(axis=0, exclude=True) return e
Example #30
Source File: tensor.py From dgl with Apache License 2.0 | 5 votes |
def forward(self, in_data): feat_shape = in_data.shape[1:] out_data = nd.empty((self.out_size,) + feat_shape, ctx=in_data.context, dtype=in_data.dtype) in_data_nd = zerocopy_to_dgl_ndarray(in_data) out_data_nd = zerocopy_to_dgl_ndarray_for_write(out_data) K.copy_reduce( self.reducer if self.reducer != 'mean' else 'sum', self.graph, self.target, in_data_nd, out_data_nd, self.in_map[0], self.out_map[0]) # normalize if mean reducer # NOTE(zihao): this is a temporary hack and we should have better solution in the future. if self.reducer == 'mean': in_ones = nd.ones((in_data.shape[0],), ctx=in_data.context, dtype=in_data.dtype) degs = nd.empty((out_data.shape[0],), ctx=out_data.context, dtype=out_data.dtype) in_ones_nd = zerocopy_to_dgl_ndarray(in_ones) degs_nd = zerocopy_to_dgl_ndarray(degs) K.copy_reduce( 'sum', self.graph, self.target, in_ones_nd, degs_nd, self.in_map[0], self.out_map[0]) # reshape degs = degs.reshape((out_data.shape[0],) + (1,) * (out_data.ndim - 1)).clip(1, float('inf')) out_data = out_data / degs else: degs = None self.save_for_backward(in_data_nd, out_data_nd, degs) return out_data