Python mxnet.ndarray.clip() Examples
The following are 19
code examples of mxnet.ndarray.clip().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mxnet.ndarray
, or try the search function
.
Example #1
Source File: utils.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def tensor_save_rgbimage(img, filename, cuda=False): img = F.clip(img, 0, 255).asnumpy() img = img.transpose(1, 2, 0).astype('uint8') img = Image.fromarray(img) img.save(filename)
Example #2
Source File: kaggle_k_fold_cross_validation.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def get_rmse_log(net, X_train, y_train): """Gets root mse between the logarithms of the prediction and the truth.""" num_train = X_train.shape[0] clipped_preds = nd.clip(net(X_train), 1, float('inf')) return np.sqrt(2 * nd.sum(square_loss( nd.log(clipped_preds), nd.log(y_train))).asscalar() / num_train)
Example #3
Source File: utils.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def imagenet_clamp_batch(batch, low, high): """ Not necessary in practice """ F.clip(batch[:,0,:,:],low-123.680, high-123.680) F.clip(batch[:,1,:,:],low-116.779, high-116.779) F.clip(batch[:,2,:,:],low-103.939, high-103.939)
Example #4
Source File: utils.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def tensor_save_rgbimage(img, filename, cuda=False): img = F.clip(img, 0, 255).asnumpy() img = img.transpose(1, 2, 0).astype('uint8') img = Image.fromarray(img) img.save(filename)
Example #5
Source File: utils.py From MXNet-Gluon-Style-Transfer with MIT License | 5 votes |
def imagenet_clamp_batch(batch, low, high): """ Not necessary in practice """ F.clip(batch[:,0,:,:],low-123.680, high-123.680) F.clip(batch[:,1,:,:],low-116.779, high-116.779) F.clip(batch[:,2,:,:],low-103.939, high-103.939)
Example #6
Source File: utils.py From MXNet-Gluon-Style-Transfer with MIT License | 5 votes |
def tensor_save_rgbimage(img, filename, cuda=False): img = F.clip(img, 0, 255).asnumpy() img = img.transpose(1, 2, 0).astype('uint8') img = Image.fromarray(img) img.save(filename)
Example #7
Source File: train_cgan.py From panoptic-fpn-gluon with Apache License 2.0 | 5 votes |
def plot_img(losses_log): sw.add_image(tag='A', image=nd.clip(nd.concatenate([losses_log['real_A'][0][0:1], losses_log['fake_B'][0][0:1], losses_log['rec_A'][0][0:1], losses_log['idt_A'][0][0:1]]) * 0.5 + 0.5, 0, 1)) sw.add_image(tag='B', image=nd.clip(nd.concatenate([losses_log['real_B'][0][0:1], losses_log['fake_A'][0][0:1], losses_log['rec_B'][0][0:1], losses_log['idt_B'][0][0:1]]) * 0.5 + 0.5, 0, 1))
Example #8
Source File: train_srgan.py From panoptic-fpn-gluon with Apache License 2.0 | 5 votes |
def plot_img(losses_log): sw.add_image(tag='lr_img', image=nd.clip(nd.concatenate(losses_log['lr_img'])[0:4], 0, 1)) sw.add_image(tag='hr_img', image=nd.clip(nd.concatenate(losses_log['hr_img'])[0:4], 0, 1)) sw.add_image(tag='hr_img_fake', image=nd.clip(nd.concatenate(losses_log['hr_img_fake'])[0:4], 0, 1))
Example #9
Source File: kaggle_k_fold_cross_validation.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def get_rmse_log(net, X_train, y_train): """Gets root mse between the logarithms of the prediction and the truth.""" num_train = X_train.shape[0] clipped_preds = nd.clip(net(X_train), 1, float('inf')) return np.sqrt(2 * nd.sum(square_loss( nd.log(clipped_preds), nd.log(y_train))).asscalar() / num_train)
Example #10
Source File: utils.py From training_results_v0.6 with Apache License 2.0 | 5 votes |
def imagenet_clamp_batch(batch, low, high): """ Not necessary in practice """ F.clip(batch[:,0,:,:],low-123.680, high-123.680) F.clip(batch[:,1,:,:],low-116.779, high-116.779) F.clip(batch[:,2,:,:],low-103.939, high-103.939)
Example #11
Source File: utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def tensor_save_rgbimage(img, filename, cuda=False): img = F.clip(img, 0, 255).asnumpy() img = img.transpose(1, 2, 0).astype('uint8') img = Image.fromarray(img) img.save(filename)
Example #12
Source File: custom_layers.py From d-SNE with Apache License 2.0 | 5 votes |
def hybrid_forward(self, F, x, weight): x_norm = F.L2Normalization(x, mode='instance', name='x_n') w_norm = F.L2Normalization(weight, mode='instance', name='w_n') cos_theta = F.FullyConnected(x_norm, w_norm, no_bias=True, num_hidden=self._units, name='cos_theta') cos_theta = F.clip(cos_theta, a_min=-1, a_max=1) return cos_theta
Example #13
Source File: train_cgan.py From gluon-cv with Apache License 2.0 | 5 votes |
def plot_img(losses_log): sw.add_image(tag='A', image=nd.clip(nd.concatenate([losses_log['real_A'][0][0:1], losses_log['fake_B'][0][0:1], losses_log['rec_A'][0][0:1], losses_log['idt_A'][0][0:1]]) * 0.5 + 0.5, 0, 1)) sw.add_image(tag='B', image=nd.clip(nd.concatenate([losses_log['real_B'][0][0:1], losses_log['fake_A'][0][0:1], losses_log['rec_B'][0][0:1], losses_log['idt_B'][0][0:1]]) * 0.5 + 0.5, 0, 1))
Example #14
Source File: train_srgan.py From gluon-cv with Apache License 2.0 | 5 votes |
def plot_img(losses_log): sw.add_image(tag='lr_img', image=nd.clip(nd.concatenate(losses_log['lr_img'])[0:4], 0, 1)) sw.add_image(tag='hr_img', image=nd.clip(nd.concatenate(losses_log['hr_img'])[0:4], 0, 1)) sw.add_image(tag='hr_img_fake', image=nd.clip(nd.concatenate(losses_log['hr_img_fake'])[0:4], 0, 1))
Example #15
Source File: tensor.py From dgl with Apache License 2.0 | 5 votes |
def forward(self, in_data): feat_shape = in_data.shape[1:] out_data = nd.empty((self.out_size,) + feat_shape, ctx=in_data.context, dtype=in_data.dtype) in_data_nd = zerocopy_to_dgl_ndarray(in_data) out_data_nd = zerocopy_to_dgl_ndarray_for_write(out_data) K.copy_reduce( self.reducer if self.reducer != 'mean' else 'sum', self.graph, self.target, in_data_nd, out_data_nd, self.in_map[0], self.out_map[0]) # normalize if mean reducer # NOTE(zihao): this is a temporary hack and we should have better solution in the future. if self.reducer == 'mean': in_ones = nd.ones((in_data.shape[0],), ctx=in_data.context, dtype=in_data.dtype) degs = nd.empty((out_data.shape[0],), ctx=out_data.context, dtype=out_data.dtype) in_ones_nd = zerocopy_to_dgl_ndarray(in_ones) degs_nd = zerocopy_to_dgl_ndarray(degs) K.copy_reduce( 'sum', self.graph, self.target, in_ones_nd, degs_nd, self.in_map[0], self.out_map[0]) # reshape degs = degs.reshape((out_data.shape[0],) + (1,) * (out_data.ndim - 1)).clip(1, float('inf')) out_data = out_data / degs else: degs = None self.save_for_backward(in_data_nd, out_data_nd, degs) return out_data
Example #16
Source File: tensor.py From dgl with Apache License 2.0 | 5 votes |
def unsorted_1d_segment_mean(input, seg_id, n_segs, dim): # TODO: support other dimensions assert dim == 0, 'MXNet only supports segment mean on first dimension' n_ones = nd.ones_like(seg_id).astype(input.dtype) w = unsorted_1d_segment_sum(n_ones, seg_id, n_segs, 0) w = nd.clip(w, a_min=1, a_max=np.inf) y = unsorted_1d_segment_sum(input, seg_id, n_segs, dim) y = y / w.reshape((-1,) + (1,) * (y.ndim - 1)) return y
Example #17
Source File: kaggle_k_fold_cross_validation.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def get_rmse_log(net, X_train, y_train): """Gets root mse between the logarithms of the prediction and the truth.""" num_train = X_train.shape[0] clipped_preds = nd.clip(net(X_train), 1, float('inf')) return np.sqrt(2 * nd.sum(square_loss( nd.log(clipped_preds), nd.log(y_train))).asscalar() / num_train)
Example #18
Source File: utils.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def imagenet_clamp_batch(batch, low, high): """ Not necessary in practice """ F.clip(batch[:,0,:,:],low-123.680, high-123.680) F.clip(batch[:,1,:,:],low-116.779, high-116.779) F.clip(batch[:,2,:,:],low-103.939, high-103.939)
Example #19
Source File: tensor.py From dgl with Apache License 2.0 | 4 votes |
def forward(self, lhs_data, rhs_data): lhs_data_nd = zerocopy_to_dgl_ndarray(lhs_data) rhs_data_nd = zerocopy_to_dgl_ndarray(rhs_data) feat_shape = K.infer_binary_feature_shape(self.binary_op, lhs_data_nd, rhs_data_nd) out_shape = feat_shape if self.binary_op == 'dot': out_shape = feat_shape[:-1] out_data = nd.empty((self.out_size,) + out_shape, ctx=lhs_data.context, dtype=lhs_data.dtype) out_data_nd = zerocopy_to_dgl_ndarray_for_write(out_data) K.binary_op_reduce( self.reducer if self.reducer != 'mean' else 'sum', self.binary_op, self.graph, self.lhs, self.rhs, lhs_data_nd, rhs_data_nd, out_data_nd, self.lhs_map[0], self.rhs_map[0], self.out_map[0]) # normalize if mean reducer # NOTE(zihao): this is a temporary hack and we should have better solution in the future. if self.reducer == 'mean': degs = nd.empty((out_data.shape[0],), ctx=out_data.context, dtype=out_data.dtype) degs_nd = zerocopy_to_dgl_ndarray(degs) if self.lhs != TargetCode.DST: target = self.lhs n = lhs_data.shape[0] in_map = self.lhs_map[0] else: target = self.rhs n = rhs_data.shape[0] in_map = self.rhs_map[0] in_ones = nd.ones((n,), ctx=lhs_data.context, dtype=lhs_data.dtype) in_ones_nd = zerocopy_to_dgl_ndarray(in_ones) K.copy_reduce( 'sum', self.graph, target, in_ones_nd, degs_nd, in_map, self.out_map[0]) # reshape degs = degs.reshape((out_data.shape[0],) + (1,) * (out_data.ndim - 1)).clip(1, float('inf')) out_data = out_data / degs else: degs = None self.save_for_backward(lhs_data_nd, rhs_data_nd, out_data_nd, feat_shape, degs) return out_data