Python pretrainedmodels.resnet152() Examples
The following are 3
code examples of pretrainedmodels.resnet152().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pretrainedmodels
, or try the search function
.
Example #1
Source File: finetune_cnn.py From video-caption.pytorch with MIT License | 5 votes |
def main(args): global C, H, W coco_labels = json.load(open(args.coco_labels)) num_classes = coco_labels['num_classes'] if args.model == 'inception_v3': C, H, W = 3, 299, 299 model = pretrainedmodels.inceptionv3(pretrained='imagenet') elif args.model == 'resnet152': C, H, W = 3, 224, 224 model = pretrainedmodels.resnet152(pretrained='imagenet') elif args.model == 'inception_v4': C, H, W = 3, 299, 299 model = pretrainedmodels.inceptionv4( num_classes=1000, pretrained='imagenet') else: print("doesn't support %s" % (args['model'])) load_image_fn = utils.LoadTransformImage(model) dim_feats = model.last_linear.in_features model = MILModel(model, dim_feats, num_classes) model = model.cuda() dataset = CocoDataset(coco_labels) dataloader = DataLoader( dataset, batch_size=args.batch_size, shuffle=True) optimizer = optim.Adam( model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay) exp_lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.learning_rate_decay_every, gamma=args.learning_rate_decay_rate) crit = nn.MultiLabelSoftMarginLoss() if not os.path.isdir(args.checkpoint_path): os.mkdir(args.checkpoint_path) train(dataloader, model, crit, optimizer, exp_lr_scheduler, load_image_fn, args)
Example #2
Source File: vid_feature_extractor.py From OpenNMT-py with MIT License | 5 votes |
def __init__(self): super(FeatureExtractor, self).__init__() self.model = pretrainedmodels.resnet152() self.FEAT_SIZE = 2048
Example #3
Source File: vid_feature_extractor.py From OpenNMT-kpg-release with MIT License | 5 votes |
def __init__(self): super(FeatureExtractor, self).__init__() self.model = pretrainedmodels.resnet152() self.FEAT_SIZE = 2048