Python torch.testing() Examples
The following are 8
code examples of torch.testing().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch
, or try the search function
.
Example #1
Source File: transforms_test.py From asteroid with MIT License | 6 votes |
def test_to_numpy(np_torch_tuple, dim): """ Test torch --> np conversion (right angles)""" from_np, from_torch = np_torch_tuple if dim == 0: np_array = np.array(from_np) torch_tensor = torch.tensor(from_torch) elif dim == 1: np_array = np.array([from_np]) torch_tensor = torch.tensor([from_torch]) elif dim == 2: np_array = np.array([[from_np]]) torch_tensor = torch.tensor([[from_torch]]) else: return np_from_torch = transforms.to_numpy(torch_tensor, dim=dim) np.testing.assert_allclose(np_array, np_from_torch)
Example #2
Source File: transforms_test.py From asteroid with MIT License | 6 votes |
def test_from_numpy(np_torch_tuple, dim): """ Test np --> torch conversion (right angles)""" from_np, from_torch = np_torch_tuple if dim == 0: np_array = np.array(from_np) torch_tensor = torch.tensor(from_torch) elif dim == 1: np_array = np.array([from_np]) torch_tensor = torch.tensor([from_torch]) elif dim == 2: np_array = np.array([[from_np]]) torch_tensor = torch.tensor([[from_torch]]) else: return torch_from_np = transforms.from_numpy(np_array, dim=dim) np.testing.assert_allclose(torch_tensor, torch_from_np)
Example #3
Source File: test_pooling.py From flambe with MIT License | 5 votes |
def test_last_pooling_with_mask(): lp = pooling.LastPooling() out = lp(TENSOR, padding_mask=MASK) assert out.size() == torch.Size([2, 4]) expected = Tensor( [ [5, 6, 7, 8], [9, 10, 11, 12] ] ) torch.testing.assert_allclose(out, expected)
Example #4
Source File: test_pooling.py From flambe with MIT License | 5 votes |
def test_first_pooling_with_mask(): lp = pooling.FirstPooling() out = lp(TENSOR, padding_mask=MASK) assert out.size() == torch.Size([2, 4]) expected = Tensor( [ [1, 2, 3, 4], [1, 2, 3, 4] ] ) torch.testing.assert_allclose(out, expected)
Example #5
Source File: test_pooling.py From flambe with MIT License | 5 votes |
def test_sum_pooling_with_mask(): lp = pooling.SumPooling() out = lp(TENSOR, padding_mask=MASK) assert out.size() == torch.Size([2, 4]) expected = Tensor( [ [6, 8, 10, 12], [15, 18, 21, 24] ] ) torch.testing.assert_allclose(out, expected)
Example #6
Source File: test_pooling.py From flambe with MIT License | 5 votes |
def test_avg_pooling_with_mask(): lp = pooling.AvgPooling() out = lp(TENSOR, padding_mask=MASK) assert out.size() == torch.Size([2, 4]) expected = Tensor( [ [3, 4, 5, 6], [5, 6, 7, 8] ] ) torch.testing.assert_allclose(out, expected)
Example #7
Source File: test_bases.py From PyVideoResearch with GNU General Public License v3.0 | 5 votes |
def test_model_updates(inputs, model, target, whitelist=[]): args = Args() args.balanceloss = False args.window_smooth = 0 criterion = default_criterion.DefaultCriterion(args) optimizer = torch.optim.SGD(model.parameters(), lr=1.) optimizer.zero_grad() params = list(model.named_parameters()) initial_params = [(name, p.clone()) for (name, p) in params] output = model(inputs) meta = {} _, loss, _ = criterion(output, target, meta) loss.backward() optimizer.step() for (_, p0), (name, p1) in zip(initial_params, params): if name in whitelist: continue try: np.testing.assert_raises(AssertionError, torch.testing.assert_allclose, p0, p1) except AssertionError: if 'bias' in name: print('Warning: {} not updating'.format(name)) continue if p1.grad.norm() > 1e-6: print('Warning: {} not significantly updating'.format(name)) continue print('{} not updating'.format(name)) for (nn1, pp1) in params: print('{} grad: {}'.format(nn1, pp1.grad.norm().item())) import pdb pdb.set_trace() raise
Example #8
Source File: transforms_test.py From asteroid with MIT License | 5 votes |
def test_return_ticket_np_torch(dim): """ Test torch --> np --> torch --> np conversion""" max_tested_ndim = 4 # Random tensor shape tensor_shape = [random.randint(1, 10) for _ in range(max_tested_ndim)] # Make sure complex dimension has even shape tensor_shape[dim] = 2 * tensor_shape[dim] complex_tensor = torch.randn(tensor_shape) np_array = transforms.to_numpy(complex_tensor, dim=dim) tensor_back = transforms.from_numpy(np_array, dim=dim) np_back = transforms.to_numpy(tensor_back, dim=dim) # Check torch --> np --> torch assert_allclose(complex_tensor, tensor_back) # Check np --> torch --> np np.testing.assert_allclose(np_array, np_back)