Python torch.distributions() Examples
The following are 30
code examples of torch.distributions().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch
, or try the search function
.
Example #1
Source File: decoder_helpers.py From texar-pytorch with Apache License 2.0 | 6 votes |
def sample(self, time: int, outputs: torch.Tensor) -> torch.Tensor: r"""Returns ``sample_id`` of shape ``[batch_size, vocab_size]``. If :attr:`straight_through` is `False`, this contains the Gumbel softmax distributions over vocabulary with temperature :attr:`tau`. If :attr:`straight_through` is `True`, this contains one-hot vectors of the greedy samples. """ gumbel_samples = self._gumbel.sample(outputs.size()).to( device=outputs.device, dtype=outputs.dtype) sample_ids = torch.softmax( (outputs + gumbel_samples) / self._tau, dim=-1) if self._straight_through: argmax_ids = torch.argmax(sample_ids, dim=-1).unsqueeze(1) sample_ids_hard = torch.zeros_like(sample_ids).scatter_( dim=-1, index=argmax_ids, value=1.0) # one-hot vectors sample_ids = (sample_ids_hard - sample_ids).detach() + sample_ids return sample_ids
Example #2
Source File: tanh_normal.py From garage with MIT License | 6 votes |
def rsample_with_pre_tanh_value(self, sample_shape=torch.Size()): """Return a sample, sampled from this TanhNormal distribution. Returns the sampled value before the tanh transform is applied and the sampled value with the tanh transform applied to it. Args: sample_shape (list): shape of the return. Note: Gradients pass through this operation. Returns: torch.Tensor: Samples from this distribution. torch.Tensor: Samples from the underlying :obj:`torch.distributions.Normal` distribution, prior to being transformed with `tanh`. """ z = self._normal.rsample(sample_shape) return z, torch.tanh(z)
Example #3
Source File: VAEAC.py From vaeac with MIT License | 6 votes |
def generate_reconstructions_params(self, batch, mask, K=1): """ Generate parameters of generative distributions for reconstructions from the given batch. It makes K latent representation for each object from the batch and generate samples from them. The second axis is used to index samples for an object, i. e. if the batch shape is [n x D1 x D2], then the result shape is [n x K x D1 x D2]. It is better to use it inside torch.no_grad in order to save memory. With torch.no_grad the method doesn't require extra memory except the memory for the result. """ _, prior = self.make_latent_distributions(batch, mask) reconstructions_params = [] for i in range(K): latent = prior.rsample() rec_params = self.generative_network(latent) reconstructions_params.append(rec_params.unsqueeze(1)) return torch.cat(reconstructions_params, 1)
Example #4
Source File: prob_utils.py From vaeac with MIT License | 6 votes |
def normal_parse_params(params, min_sigma=0): """ Take a Tensor (e. g. neural network output) and return torch.distributions.Normal distribution. This Normal distribution is component-wise independent, and its dimensionality depends on the input shape. First half of channels is mean of the distribution, the softplus of the second half is std (sigma), so there is no restrictions on the input tensor. min_sigma is the minimal value of sigma. I. e. if the above softplus is less than min_sigma, then sigma is clipped from below with value min_sigma. This regularization is required for the numerical stability and may be considered as a neural network architecture choice without any change to the probabilistic model. """ n = params.shape[0] d = params.shape[1] mu = params[:, :d // 2] sigma_params = params[:, d // 2:] sigma = softplus(sigma_params) sigma = sigma.clamp(min=min_sigma) distr = Normal(mu, sigma) return distr
Example #5
Source File: distributions.py From probflow with MIT License | 6 votes |
def __call__(self): """Get the distribution object from the backend""" if get_backend() == 'pytorch': import torch.distributions as tod raise NotImplementedError else: import tensorflow as tf from tensorflow_probability import distributions as tfd # Convert to tensorflow distributions if probflow distributions if isinstance(self.distributions, BaseDistribution): self.distributions = self.distributions() # Broadcast probs/logits shape = self.distributions.batch_shape args = {'logits': None, 'probs': None} if self.logits is not None: args['logits'] = tf.broadcast_to(self['logits'], shape) else: args['probs'] = tf.broadcast_to(self['probs'], shape) # Return TFP distribution object return tfd.MixtureSameFamily( tfd.Categorical(**args), self.distributions)
Example #6
Source File: actor.py From ReAgent with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _log_prob(self, r, scale_log): """ Compute log probability from normal distribution the same way as torch.distributions.normal.Normal, which is: ``` -((value - loc) ** 2) / (2 * var) - log_scale - math.log(math.sqrt(2 * math.pi)) ``` In the context of this class, `value = loc + r * scale`. Therefore, this function only takes `r` & `scale`; it can be reduced to below. The primary reason we don't use Normal class is that it currently cannot be exported through ONNX. """ return -(r ** 2) / 2 - scale_log - self.const
Example #7
Source File: autozivae.py From scVI with MIT License | 6 votes |
def get_alphas_betas( self, as_numpy: bool = True ) -> Dict[str, Union[torch.Tensor, np.ndarray]]: # Return parameters of Bernoulli Beta distributions in a dictionary outputs = {} outputs["alpha_posterior"] = torch.sigmoid(self.alpha_posterior_logit) outputs["beta_posterior"] = torch.sigmoid(self.beta_posterior_logit) outputs["alpha_prior"] = torch.sigmoid(self.alpha_prior_logit) outputs["beta_prior"] = torch.sigmoid(self.beta_prior_logit) if as_numpy: for key, value in outputs.items(): outputs[key] = ( value.detach().cpu().numpy() if value.requires_grad else value.cpu().numpy() ) return outputs
Example #8
Source File: pl.py From neuralsort with MIT License | 6 votes |
def rsample(self, sample_shape, log_score=True): """ sample_shape: number of samples from the PL distribution. Scalar. """ with torch.enable_grad(): # torch.distributions turns off autograd n_samples = sample_shape[0] def sample_gumbel(samples_shape, eps=1e-20): U = torch.zeros(samples_shape, device='cuda').uniform_() return -torch.log(-torch.log(U + eps) + eps) if not log_score: log_s_perturb = torch.log(self.scores.unsqueeze( 0)) + sample_gumbel([n_samples, 1, self.n, 1]) else: log_s_perturb = self.scores.unsqueeze( 0) + sample_gumbel([n_samples, 1, self.n, 1]) log_s_perturb = log_s_perturb.view(-1, self.n, 1) P_hat = self.relaxed_sort(log_s_perturb) P_hat = P_hat.view(n_samples, -1, self.n, self.n) return P_hat.squeeze()
Example #9
Source File: VAEAC.py From vaeac with MIT License | 6 votes |
def generate_samples_params(self, batch, mask, K=1): """ Generate parameters of generative distributions for samples from the given batch. It makes K latent representation for each object from the batch and generate samples from them. The second axis is used to index samples for an object, i. e. if the batch shape is [n x D1 x D2], then the result shape is [n x K x D1 x D2]. It is better to use it inside torch.no_grad in order to save memory. With torch.no_grad the method doesn't require extra memory except the memory for the result. """ _, prior = self.make_latent_distributions(batch, mask) samples_params = [] for i in range(K): latent = prior.rsample() sample_params = self.generative_network(latent) samples_params.append(sample_params.unsqueeze(1)) return torch.cat(samples_params, 1)
Example #10
Source File: module.py From pyfilter with MIT License | 6 votes |
def apply(self, f: Callable[[torch.Tensor], torch.Tensor]): """ Applies function f to all tensors. :param f: The callable :return: Self """ for t in (t_ for t_ in self.tensors() if t_._base is None): t.data = f(t.data) if t._grad is not None: t._grad.data = f(t._grad.data) for t in (t_ for t_ in self.tensors() if t_._base is not None): # TODO: Not too sure about this one, happens for some distributions if t._base.dim() > 0: t.data = t._base.data.view(t.data.shape) else: t.data = f(t.data) return self
Example #11
Source File: module.py From pyfilter with MIT License | 6 votes |
def tensors(self) -> Tuple[torch.Tensor, ...]: """ Finds and returns all instances of type module. """ res = tuple() # ===== Find all tensor types ====== # res += tuple(self._find_obj_helper(torch.Tensor).values()) # ===== Tensor containers ===== # for tc in self._find_obj_helper(TensorContainerBase).values(): res += tc.tensors for t in (t_ for t_ in tc.tensors if isinstance(t_, Parameter) and t_.trainable): res += _iterate_distribution(t.distr) # ===== Pytorch distributions ===== # for d in self._find_obj_helper(Distribution).values(): res += _iterate_distribution(d) # ===== Modules ===== # for mod in self.modules().values(): res += mod.tensors() return res
Example #12
Source File: module.py From pyfilter with MIT License | 6 votes |
def _iterate_distribution(d: Distribution) -> Tuple[Distribution, ...]: """ Helper method for iterating over distributions. :param d: The distribution """ res = tuple() if not isinstance(d, TransformedDistribution): res += tuple(_find_types(d, torch.Tensor).values()) for sd in _find_types(d, Distribution).values(): res += _iterate_distribution(sd) else: res += _iterate_distribution(d.base_dist) for t in d.transforms: res += tuple(_find_types(t, torch.Tensor).values()) return res
Example #13
Source File: models.py From RecNN with Apache License 2.0 | 6 votes |
def __init__(self, state_dim, action_dim, latent_dim): super(bcqGenerator, self).__init__() # encoder self.e1 = nn.Linear(state_dim + action_dim, 750) self.e2 = nn.Linear(750, 750) self.mean = nn.Linear(750, latent_dim) self.log_std = nn.Linear(750, latent_dim) # decoder self.d1 = nn.Linear(state_dim + latent_dim, 750) self.d2 = nn.Linear(750, 750) self.d3 = nn.Linear(750, action_dim) self.latent_dim = latent_dim self.normal = torch.distributions.Normal(0, 1)
Example #14
Source File: modules.py From recurrent-visual-attention with MIT License | 6 votes |
def forward(self, h_t): # compute mean feat = F.relu(self.fc(h_t.detach())) mu = torch.tanh(self.fc_lt(feat)) # reparametrization trick l_t = torch.distributions.Normal(mu, self.std).rsample() l_t = l_t.detach() log_pi = Normal(mu, self.std).log_prob(l_t) # we assume both dimensions are independent # 1. pdf of the joint is the product of the pdfs # 2. log of the product is the sum of the logs log_pi = torch.sum(log_pi, dim=1) # bound between [-1, 1] l_t = torch.clamp(l_t, -1, 1) return log_pi, l_t
Example #15
Source File: test_multivariate_normal.py From gpytorch with MIT License | 6 votes |
def test_kl_divergence(self, cuda=False): device = torch.device("cuda") if cuda else torch.device("cpu") for dtype in (torch.float, torch.double): mean0 = torch.randn(4, device=device, dtype=dtype) mean1 = mean0 + 1 var0 = torch.randn(4, device=device, dtype=dtype).abs_() var1 = var0 * math.exp(2) dist_a = MultivariateNormal(mean0, DiagLazyTensor(var0)) dist_b = MultivariateNormal(mean1, DiagLazyTensor(var0)) dist_c = MultivariateNormal(mean0, DiagLazyTensor(var1)) res = torch.distributions.kl.kl_divergence(dist_a, dist_a) actual = 0.0 self.assertLess((res - actual).abs().item(), 1e-2) res = torch.distributions.kl.kl_divergence(dist_b, dist_a) actual = var0.reciprocal().sum().div(2.0) self.assertLess((res - actual).div(res).abs().item(), 1e-2) res = torch.distributions.kl.kl_divergence(dist_a, dist_c) actual = 0.5 * (8 - 4 + 4 * math.exp(-2)) self.assertLess((res - actual).div(res).abs().item(), 1e-2)
Example #16
Source File: continuous.py From rising with MIT License | 5 votes |
def __init__(self, mu: Union[float, torch.Tensor], sigma: Union[float, torch.Tensor]): """ Args: mu : the distributions mean sigma : the distributions standard deviation """ super().__init__(torch.distributions.Normal(loc=mu, scale=sigma))
Example #17
Source File: continuous.py From rising with MIT License | 5 votes |
def __init__(self, low: Union[float, torch.Tensor], high: Union[float, torch.Tensor]): """ Args: low : the lower range (inclusive) high : the higher range (exclusive) """ super().__init__(torch.distributions.Uniform(low=low, high=high))
Example #18
Source File: decoder_helpers.py From texar-pytorch with Apache License 2.0 | 5 votes |
def sample(self, time: int, outputs: torch.Tensor) -> torch.Tensor: r"""Returns ``sample_id`` which is softmax distributions over vocabulary with temperature :attr:`tau`. Shape = ``[batch_size, vocab_size]``. """ del time sample_ids = torch.softmax(outputs / self._tau, dim=-1) return sample_ids
Example #19
Source File: distributions.py From probflow with MIT License | 5 votes |
def __call__(self): """Get the distribution object from the backend""" if get_backend() == 'pytorch': TorchDeterministic = get_TorchDeterministic() return TorchDeterministic(self['loc']) else: from tensorflow_probability import distributions as tfd return tfd.Deterministic(self['loc'])
Example #20
Source File: distributions.py From probflow with MIT License | 5 votes |
def __call__(self): """Get the distribution object from the backend""" if get_backend() == 'pytorch': import torch.distributions as tod raise NotImplementedError else: from tensorflow_probability import distributions as tfd return tfd.HiddenMarkovModel( initial_distribution=tfd.Categorical(self['initial']), transition_distribution=tfd.Categorical(self['transition']), observation_distribution=self['observation'], num_steps=self['steps'])
Example #21
Source File: distributions.py From probflow with MIT License | 5 votes |
def __call__(self): """Get the distribution object from the backend""" if get_backend() == 'pytorch': import torch.distributions as tod return tod.cauchy.Cauchy(self['loc'], self['scale']) else: from tensorflow_probability import distributions as tfd return tfd.Cauchy(self['loc'], self['scale'])
Example #22
Source File: distributions.py From WaveRNN-Pytorch with MIT License | 5 votes |
def sample_from_discretized_mix_logistic(y, log_scale_min=hp.log_scale_min): """ Sample from discretized mixture of logistic distributions Args: y (Tensor): B x C x T log_scale_min (float): Log scale minimum value Returns: Tensor: sample in range of [-1, 1]. """ assert y.size(1) % 3 == 0 nr_mix = y.size(1) // 3 # B x T x C y = y.transpose(1, 2) logit_probs = y[:, :, :nr_mix] # sample mixture indicator from softmax temp = logit_probs.data.new(logit_probs.size()).uniform_(1e-5, 1.0 - 1e-5) temp = logit_probs.data - torch.log(- torch.log(temp)) _, argmax = temp.max(dim=-1) # (B, T) -> (B, T, nr_mix) one_hot = to_one_hot(argmax, nr_mix) # select logistic parameters means = torch.sum(y[:, :, nr_mix:2 * nr_mix] * one_hot, dim=-1) log_scales = torch.clamp(torch.sum( y[:, :, 2 * nr_mix:3 * nr_mix] * one_hot, dim=-1), min=log_scale_min) # sample from logistic & clip to interval # we don't actually round to the nearest 8bit value when sampling u = means.data.new(means.size()).uniform_(1e-5, 1.0 - 1e-5) x = means + torch.exp(log_scales) * (torch.log(u) - torch.log(1. - u)) x = torch.clamp(torch.clamp(x, min=-1.), max=1.) return x # add gaussian from clarinet implementation:https://raw.githubusercontent.com/ksw0306/ClariNet/master/loss.py
Example #23
Source File: action_distributions.py From sample-factory with MIT License | 5 votes |
def kl_divergence(self, other): kl = torch.distributions.kl.kl_divergence(self, other) return kl
Example #24
Source File: action_distributions.py From sample-factory with MIT License | 5 votes |
def dbg_print(self): for d in self.distributions: d.dbg_print() # noinspection PyAbstractClass
Example #25
Source File: action_distributions.py From sample-factory with MIT License | 5 votes |
def kl_divergence(self, other): kls = [ d.kl_divergence(other_d).unsqueeze(dim=1) for d, other_d in zip(self.distributions, other.distributions) ] kls = torch.cat(kls, dim=1) kl = kls.sum(dim=1) return kl
Example #26
Source File: action_distributions.py From sample-factory with MIT License | 5 votes |
def log_prob(self, actions): # split into batches of actions from individual distributions list_of_action_batches = torch.chunk(actions, len(self.distributions), dim=1) list_of_action_batches = [a.squeeze(dim=1) for a in list_of_action_batches] log_probs = self._calc_log_probs(list_of_action_batches) return log_probs
Example #27
Source File: action_distributions.py From sample-factory with MIT License | 5 votes |
def sample(self): list_of_action_batches = [d.sample() for d in self.distributions] return self._flatten_actions(list_of_action_batches)
Example #28
Source File: action_distributions.py From sample-factory with MIT License | 5 votes |
def sample_actions_log_probs(self): list_of_action_batches = [d.sample() for d in self.distributions] batch_of_action_tuples = self._flatten_actions(list_of_action_batches) log_probs = self._calc_log_probs(list_of_action_batches) return batch_of_action_tuples, log_probs
Example #29
Source File: action_distributions.py From sample-factory with MIT License | 5 votes |
def _calc_log_probs(self, list_of_action_batches): # calculate batched log probs for every distribution log_probs = [d.log_prob(a) for d, a in zip(self.distributions, list_of_action_batches)] log_probs = [lp.unsqueeze(dim=1) for lp in log_probs] # concatenate and calculate sum of individual log-probs # this is valid under the assumption that action distributions are independent log_probs = torch.cat(log_probs, dim=1) log_probs = log_probs.sum(dim=1) return log_probs
Example #30
Source File: action_distributions.py From sample-factory with MIT License | 5 votes |
def __init__(self, action_space, logits_flat): self.logit_lengths = [calc_num_logits(s) for s in action_space.spaces] self.split_logits = torch.split(logits_flat, self.logit_lengths, dim=1) assert len(self.split_logits) == len(action_space.spaces) self.distributions = [] for i, space in enumerate(action_space.spaces): self.distributions.append(get_action_distribution(space, self.split_logits[i]))