Python apex.parallel.convert_syncbn_model() Examples
The following are 4
code examples of apex.parallel.convert_syncbn_model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
apex.parallel
, or try the search function
.
Example #1
Source File: py_factory.py From CornerNet-Lite-Pytorch with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, system_config, model, distributed=False, gpu=None): super(NetworkFactory, self).__init__() self.system_config = system_config self.gpu = gpu self.model = DummyModule(model) self.loss = model.loss self.network = Network(self.model, self.loss) if distributed: from apex.parallel import DistributedDataParallel, convert_syncbn_model torch.cuda.set_device(gpu) self.network = self.network.cuda(gpu) self.network = convert_syncbn_model(self.network) self.network = DistributedDataParallel(self.network) else: self.network = DataParallel(self.network, chunk_sizes=system_config.chunk_sizes) total_params = 0 for params in self.model.parameters(): num_params = 1 for x in params.size(): num_params *= x total_params += num_params print("\033[0;35m " + "total parameters: {}".format( total_params) + "\033[0m") if system_config.opt_algo == "adam": self.optimizer = torch.optim.Adam( filter(lambda p: p.requires_grad, self.model.parameters()) ) elif system_config.opt_algo == "sgd": self.optimizer = torch.optim.SGD( filter(lambda p: p.requires_grad, self.model.parameters()), lr=system_config.learning_rate, momentum=0.9, weight_decay=0.0001 ) else: raise ValueError("unknown optimizer")
Example #2
Source File: optimization.py From FARM with Apache License 2.0 | 5 votes |
def optimize_model(model, device, local_rank, optimizer=None, distributed=False, use_amp=None): """ Wraps MultiGPU or distributed usage around a model No support for ONNX models :param model: model to optimize (e.g. trimming weights to fp16 / mixed precision) :type model: AdaptiveModel :param device: either gpu or cpu, get the device from initialize_device_settings() :param distributed: Whether training on distributed machines :param local_rank: rank of the machine in a distributed setting :param use_amp: Optimization level of nvidia's automatic mixed precision (AMP). The higher the level, the faster the model. Options: "O0" (Normal FP32 training) "O1" (Mixed Precision => Recommended) "O2" (Almost FP16) "O3" (Pure FP16). See details on: https://nvidia.github.io/apex/amp.html :return: model, optimizer """ model, optimizer = _init_amp(model, device, optimizer, use_amp) if distributed: if APEX_PARALLEL_AVAILABLE: model = convert_syncbn_model(model) logger.info("Multi-GPU Training via DistributedDataParallel and apex.parallel") else: logger.info("Multi-GPU Training via DistributedDataParallel") # for some models DistributedDataParallel might complain about parameters # not contributing to loss. find_used_parameters remedies that. model = WrappedDDP(model, device_ids=[local_rank], output_device=local_rank, find_unused_parameters=True) elif torch.cuda.device_count() > 1 and device.type == "cuda": model = WrappedDataParallel(model) logger.info("Multi-GPU Training via DataParallel") return model, optimizer
Example #3
Source File: py_factory.py From CornerNet-Lite with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, system_config, model, distributed=False, gpu=None): super(NetworkFactory, self).__init__() self.system_config = system_config self.gpu = gpu self.model = DummyModule(model) self.loss = model.loss self.network = Network(self.model, self.loss) if distributed: from apex.parallel import DistributedDataParallel, convert_syncbn_model torch.cuda.set_device(gpu) self.network = self.network.cuda(gpu) self.network = convert_syncbn_model(self.network) self.network = DistributedDataParallel(self.network) else: self.network = DataParallel(self.network, chunk_sizes=system_config.chunk_sizes) total_params = 0 for params in self.model.parameters(): num_params = 1 for x in params.size(): num_params *= x total_params += num_params print("total parameters: {}".format(total_params)) if system_config.opt_algo == "adam": self.optimizer = torch.optim.Adam( filter(lambda p: p.requires_grad, self.model.parameters()) ) elif system_config.opt_algo == "sgd": self.optimizer = torch.optim.SGD( filter(lambda p: p.requires_grad, self.model.parameters()), lr=system_config.learning_rate, momentum=0.9, weight_decay=0.0001 ) else: raise ValueError("unknown optimizer")
Example #4
Source File: train.py From BiSeNet with MIT License | 5 votes |
def set_syncbn(net): if has_apex: net = parallel.convert_syncbn_model(net) else: net = nn.SyncBatchNorm.convert_sync_batchnorm(net) return net