Python object_detection.core.preprocessor.ssd_random_crop() Examples

The following are 30 code examples of object_detection.core.preprocessor.ssd_random_crop(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module object_detection.core.preprocessor , or try the search function .
Example #1
Source File: preprocessor_builder_test.py    From moveo_ros with MIT License 5 votes vote down vote up
def test_build_ssd_random_crop_empty_operations(self):
    preprocessor_text_proto = """
    ssd_random_crop {
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {}) 
Example #2
Source File: preprocessor_builder_test.py    From object_detection_with_tensorflow with MIT License 5 votes vote down vote up
def test_build_ssd_random_crop_empty_operations(self):
    preprocessor_text_proto = """
    ssd_random_crop {
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {}) 
Example #3
Source File: preprocessor_test.py    From Elphas with Apache License 2.0 5 votes vote down vote up
def testSSDRandomCropWithCache(self):
    preprocess_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=True,
                                test_masks=False,
                                test_keypoints=False) 
Example #4
Source File: preprocessor_builder_test.py    From object_detection_with_tensorflow with MIT License 5 votes vote down vote up
def test_build_ssd_random_crop(self):
    preprocessor_text_proto = """
    ssd_random_crop {
      operations {
        min_object_covered: 0.0
        min_aspect_ratio: 0.875
        max_aspect_ratio: 1.125
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.0
        random_coef: 0.375
      }
      operations {
        min_object_covered: 0.25
        min_aspect_ratio: 0.75
        max_aspect_ratio: 1.5
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.25
        random_coef: 0.375
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {'min_object_covered': [0.0, 0.25],
                            'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)],
                            'area_range': [(0.5, 1.0), (0.5, 1.0)],
                            'overlap_thresh': [0.0, 0.25],
                            'random_coef': [0.375, 0.375]}) 
Example #5
Source File: preprocessor_test.py    From AniSeg with Apache License 2.0 5 votes vote down vote up
def testSSDRandomCropWithCache(self):
    preprocess_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=True,
                                test_masks=False,
                                test_keypoints=False) 
Example #6
Source File: preprocessor_test.py    From object_detection_with_tensorflow with MIT License 5 votes vote down vote up
def testSSDRandomCrop(self):
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
    }
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run(
           [boxes_rank, distorted_boxes_rank, images_rank,
            distorted_images_rank])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
Example #7
Source File: preprocessor_test.py    From object_detection_with_tensorflow with MIT License 5 votes vote down vote up
def testSSDRandomCrop(self):
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
    }
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run(
           [boxes_rank, distorted_boxes_rank, images_rank,
            distorted_images_rank])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
Example #8
Source File: preprocessor_builder_test.py    From Elphas with Apache License 2.0 5 votes vote down vote up
def test_build_ssd_random_crop_empty_operations(self):
    preprocessor_text_proto = """
    ssd_random_crop {
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {}) 
Example #9
Source File: preprocessor_builder_test.py    From Elphas with Apache License 2.0 5 votes vote down vote up
def test_build_ssd_random_crop(self):
    preprocessor_text_proto = """
    ssd_random_crop {
      operations {
        min_object_covered: 0.0
        min_aspect_ratio: 0.875
        max_aspect_ratio: 1.125
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.0
        random_coef: 0.375
      }
      operations {
        min_object_covered: 0.25
        min_aspect_ratio: 0.75
        max_aspect_ratio: 1.5
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.25
        random_coef: 0.375
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {'min_object_covered': [0.0, 0.25],
                            'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)],
                            'area_range': [(0.5, 1.0), (0.5, 1.0)],
                            'overlap_thresh': [0.0, 0.25],
                            'random_coef': [0.375, 0.375]}) 
Example #10
Source File: preprocessor_test.py    From Elphas with Apache License 2.0 5 votes vote down vote up
def testSSDRandomCrop(self):
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
    }
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run(
           [boxes_rank, distorted_boxes_rank, images_rank,
            distorted_images_rank])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
Example #11
Source File: preprocessor_builder_test.py    From object_detection_with_tensorflow with MIT License 5 votes vote down vote up
def test_build_ssd_random_crop(self):
    preprocessor_text_proto = """
    ssd_random_crop {
      operations {
        min_object_covered: 0.0
        min_aspect_ratio: 0.875
        max_aspect_ratio: 1.125
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.0
        random_coef: 0.375
      }
      operations {
        min_object_covered: 0.25
        min_aspect_ratio: 0.75
        max_aspect_ratio: 1.5
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.25
        random_coef: 0.375
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {'min_object_covered': [0.0, 0.25],
                            'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)],
                            'area_range': [(0.5, 1.0), (0.5, 1.0)],
                            'overlap_thresh': [0.0, 0.25],
                            'random_coef': [0.375, 0.375]}) 
Example #12
Source File: preprocessor_builder_test.py    From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 5 votes vote down vote up
def test_build_ssd_random_crop(self):
    preprocessor_text_proto = """
    ssd_random_crop {
      operations {
        min_object_covered: 0.0
        min_aspect_ratio: 0.875
        max_aspect_ratio: 1.125
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.0
        clip_boxes: False
        random_coef: 0.375
      }
      operations {
        min_object_covered: 0.25
        min_aspect_ratio: 0.75
        max_aspect_ratio: 1.5
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.25
        clip_boxes: True
        random_coef: 0.375
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {'min_object_covered': [0.0, 0.25],
                            'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)],
                            'area_range': [(0.5, 1.0), (0.5, 1.0)],
                            'overlap_thresh': [0.0, 0.25],
                            'clip_boxes': [False, True],
                            'random_coef': [0.375, 0.375]}) 
Example #13
Source File: preprocessor_builder_test.py    From hands-detection with MIT License 5 votes vote down vote up
def test_build_ssd_random_crop_empty_operations(self):
    preprocessor_text_proto = """
    ssd_random_crop {
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {}) 
Example #14
Source File: preprocessor_builder_test.py    From hands-detection with MIT License 5 votes vote down vote up
def test_build_ssd_random_crop(self):
    preprocessor_text_proto = """
    ssd_random_crop {
      operations {
        min_object_covered: 0.0
        min_aspect_ratio: 0.875
        max_aspect_ratio: 1.125
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.0
        random_coef: 0.375
      }
      operations {
        min_object_covered: 0.25
        min_aspect_ratio: 0.75
        max_aspect_ratio: 1.5
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.25
        random_coef: 0.375
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {'min_object_covered': [0.0, 0.25],
                            'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)],
                            'area_range': [(0.5, 1.0), (0.5, 1.0)],
                            'overlap_thresh': [0.0, 0.25],
                            'random_coef': [0.375, 0.375]}) 
Example #15
Source File: preprocessor_test.py    From hands-detection with MIT License 5 votes vote down vote up
def testSSDRandomCrop(self):
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes,
                   fields.InputDataFields.groundtruth_classes: labels}
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run(
           [boxes_rank, distorted_boxes_rank, images_rank,
            distorted_images_rank])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
Example #16
Source File: preprocessor_builder_test.py    From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 5 votes vote down vote up
def test_build_ssd_random_crop_empty_operations(self):
    preprocessor_text_proto = """
    ssd_random_crop {
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {}) 
Example #17
Source File: preprocessor_builder_test.py    From moveo_ros with MIT License 5 votes vote down vote up
def test_build_ssd_random_crop(self):
    preprocessor_text_proto = """
    ssd_random_crop {
      operations {
        min_object_covered: 0.0
        min_aspect_ratio: 0.875
        max_aspect_ratio: 1.125
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.0
        random_coef: 0.375
      }
      operations {
        min_object_covered: 0.25
        min_aspect_ratio: 0.75
        max_aspect_ratio: 1.5
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.25
        random_coef: 0.375
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {'min_object_covered': [0.0, 0.25],
                            'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)],
                            'area_range': [(0.5, 1.0), (0.5, 1.0)],
                            'overlap_thresh': [0.0, 0.25],
                            'random_coef': [0.375, 0.375]}) 
Example #18
Source File: preprocessor_test.py    From moveo_ros with MIT License 5 votes vote down vote up
def testSSDRandomCrop(self):
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes,
                   fields.InputDataFields.groundtruth_classes: labels}
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run(
           [boxes_rank, distorted_boxes_rank, images_rank,
            distorted_images_rank])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
Example #19
Source File: preprocessor_builder_test.py    From BMW-TensorFlow-Training-GUI with Apache License 2.0 5 votes vote down vote up
def test_build_ssd_random_crop_empty_operations(self):
    preprocessor_text_proto = """
    ssd_random_crop {
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {}) 
Example #20
Source File: preprocessor_builder_test.py    From BMW-TensorFlow-Training-GUI with Apache License 2.0 5 votes vote down vote up
def test_build_ssd_random_crop(self):
    preprocessor_text_proto = """
    ssd_random_crop {
      operations {
        min_object_covered: 0.0
        min_aspect_ratio: 0.875
        max_aspect_ratio: 1.125
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.0
        random_coef: 0.375
      }
      operations {
        min_object_covered: 0.25
        min_aspect_ratio: 0.75
        max_aspect_ratio: 1.5
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.25
        random_coef: 0.375
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {'min_object_covered': [0.0, 0.25],
                            'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)],
                            'area_range': [(0.5, 1.0), (0.5, 1.0)],
                            'overlap_thresh': [0.0, 0.25],
                            'random_coef': [0.375, 0.375]}) 
Example #21
Source File: preprocessor_test.py    From BMW-TensorFlow-Training-GUI with Apache License 2.0 5 votes vote down vote up
def testSSDRandomCrop(self):
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
    }
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run(
           [boxes_rank, distorted_boxes_rank, images_rank,
            distorted_images_rank])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
Example #22
Source File: preprocessor_test.py    From BMW-TensorFlow-Training-GUI with Apache License 2.0 5 votes vote down vote up
def testSSDRandomCropWithCache(self):
    preprocess_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=True,
                                test_masks=False,
                                test_keypoints=False) 
Example #23
Source File: preprocessor_builder_test.py    From ros_tensorflow with Apache License 2.0 5 votes vote down vote up
def test_build_ssd_random_crop_empty_operations(self):
    preprocessor_text_proto = """
    ssd_random_crop {
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {}) 
Example #24
Source File: preprocessor_builder_test.py    From ros_tensorflow with Apache License 2.0 5 votes vote down vote up
def test_build_ssd_random_crop(self):
    preprocessor_text_proto = """
    ssd_random_crop {
      operations {
        min_object_covered: 0.0
        min_aspect_ratio: 0.875
        max_aspect_ratio: 1.125
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.0
        random_coef: 0.375
      }
      operations {
        min_object_covered: 0.25
        min_aspect_ratio: 0.75
        max_aspect_ratio: 1.5
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.25
        random_coef: 0.375
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {'min_object_covered': [0.0, 0.25],
                            'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)],
                            'area_range': [(0.5, 1.0), (0.5, 1.0)],
                            'overlap_thresh': [0.0, 0.25],
                            'random_coef': [0.375, 0.375]}) 
Example #25
Source File: preprocessor_test.py    From ros_tensorflow with Apache License 2.0 5 votes vote down vote up
def testSSDRandomCrop(self):
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {
        fields.InputDataFields.image: images,
        fields.InputDataFields.groundtruth_boxes: boxes,
        fields.InputDataFields.groundtruth_classes: labels,
    }
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run(
           [boxes_rank, distorted_boxes_rank, images_rank,
            distorted_images_rank])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
Example #26
Source File: preprocessor_test.py    From ros_tensorflow with Apache License 2.0 5 votes vote down vote up
def testSSDRandomCropWithCache(self):
    preprocess_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=True,
                                test_masks=False,
                                test_keypoints=False) 
Example #27
Source File: preprocessor_builder_test.py    From Gun-Detector with Apache License 2.0 5 votes vote down vote up
def test_build_ssd_random_crop_empty_operations(self):
    preprocessor_text_proto = """
    ssd_random_crop {
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {}) 
Example #28
Source File: preprocessor_builder_test.py    From Gun-Detector with Apache License 2.0 5 votes vote down vote up
def test_build_ssd_random_crop(self):
    preprocessor_text_proto = """
    ssd_random_crop {
      operations {
        min_object_covered: 0.0
        min_aspect_ratio: 0.875
        max_aspect_ratio: 1.125
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.0
        random_coef: 0.375
      }
      operations {
        min_object_covered: 0.25
        min_aspect_ratio: 0.75
        max_aspect_ratio: 1.5
        min_area: 0.5
        max_area: 1.0
        overlap_thresh: 0.25
        random_coef: 0.375
      }
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.ssd_random_crop)
    self.assertEqual(args, {'min_object_covered': [0.0, 0.25],
                            'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)],
                            'area_range': [(0.5, 1.0), (0.5, 1.0)],
                            'overlap_thresh': [0.0, 0.25],
                            'random_coef': [0.375, 0.375]}) 
Example #29
Source File: preprocessor_test.py    From DOTA_models with Apache License 2.0 5 votes vote down vote up
def testSSDRandomCrop(self):
    preprocessing_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    images = self.createTestImages()
    boxes = self.createTestBoxes()
    labels = self.createTestLabels()
    tensor_dict = {fields.InputDataFields.image: images,
                   fields.InputDataFields.groundtruth_boxes: boxes,
                   fields.InputDataFields.groundtruth_classes: labels}
    distorted_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                    preprocessing_options)
    distorted_images = distorted_tensor_dict[fields.InputDataFields.image]
    distorted_boxes = distorted_tensor_dict[
        fields.InputDataFields.groundtruth_boxes]

    images_rank = tf.rank(images)
    distorted_images_rank = tf.rank(distorted_images)
    boxes_rank = tf.rank(boxes)
    distorted_boxes_rank = tf.rank(distorted_boxes)

    with self.test_session() as sess:
      (boxes_rank_, distorted_boxes_rank_, images_rank_,
       distorted_images_rank_) = sess.run(
           [boxes_rank, distorted_boxes_rank, images_rank,
            distorted_images_rank])
      self.assertAllEqual(boxes_rank_, distorted_boxes_rank_)
      self.assertAllEqual(images_rank_, distorted_images_rank_) 
Example #30
Source File: preprocessor_test.py    From Gun-Detector with Apache License 2.0 5 votes vote down vote up
def testSSDRandomCropWithCache(self):
    preprocess_options = [
        (preprocessor.normalize_image, {
            'original_minval': 0,
            'original_maxval': 255,
            'target_minval': 0,
            'target_maxval': 1
        }),
        (preprocessor.ssd_random_crop, {})]
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=True,
                                test_masks=False,
                                test_keypoints=False)