Python object_detection.core.preprocessor.ssd_random_crop_pad() Examples
The following are 30
code examples of object_detection.core.preprocessor.ssd_random_crop_pad().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.core.preprocessor
, or try the search function
.
Example #1
Source File: preprocessor_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #2
Source File: preprocessor_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #3
Source File: preprocessor_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #4
Source File: preprocessor_test.py From Accident-Detection-on-Indian-Roads with GNU Affero General Public License v3.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #5
Source File: preprocessor_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #6
Source File: preprocessor_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #7
Source File: preprocessor_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #8
Source File: preprocessor_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #9
Source File: preprocessor_test.py From moveo_ros with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #10
Source File: preprocessor_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #11
Source File: preprocessor_test.py From hands-detection with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #12
Source File: preprocessor_test.py From AniSeg with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #13
Source File: preprocessor_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #14
Source File: preprocessor_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #15
Source File: preprocessor_test.py From MBMD with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #16
Source File: preprocessor_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #17
Source File: preprocessor_test.py From Elphas with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #18
Source File: preprocessor_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #19
Source File: preprocessor_test.py From models with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): def graph_fn(): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) return [ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ] (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = self.execute_cpu(graph_fn, []) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #20
Source File: preprocessor_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #21
Source File: preprocessor_test.py From object_detector_app with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #22
Source File: preprocessor_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #23
Source File: preprocessor_test.py From HereIsWally with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #24
Source File: preprocessor_test.py From motion-rcnn with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #25
Source File: preprocessor_test.py From garbage-object-detection-tensorflow with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #26
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() weights = self.createTestGroundtruthWeights() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_weights: weights, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #27
Source File: preprocessor_test.py From Person-Detection-and-Tracking with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #28
Source File: preprocessor_test.py From mtl-ssl with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #29
Source File: preprocessor_test.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #30
Source File: preprocessor_builder_test.py From multilabel-image-classification-tensorflow with MIT License | 4 votes |
def test_build_ssd_random_crop_pad(self): preprocessor_text_proto = """ ssd_random_crop_pad { operations { min_object_covered: 0.0 min_aspect_ratio: 0.875 max_aspect_ratio: 1.125 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 clip_boxes: False random_coef: 0.375 min_padded_size_ratio: [1.0, 1.0] max_padded_size_ratio: [2.0, 2.0] pad_color_r: 0.5 pad_color_g: 0.5 pad_color_b: 0.5 } operations { min_object_covered: 0.25 min_aspect_ratio: 0.75 max_aspect_ratio: 1.5 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 clip_boxes: True random_coef: 0.375 min_padded_size_ratio: [1.0, 1.0] max_padded_size_ratio: [2.0, 2.0] pad_color_r: 0.5 pad_color_g: 0.5 pad_color_b: 0.5 } } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_pad) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio_range': [(0.875, 1.125), (0.75, 1.5)], 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'clip_boxes': [False, True], 'random_coef': [0.375, 0.375], 'min_padded_size_ratio': [(1.0, 1.0), (1.0, 1.0)], 'max_padded_size_ratio': [(2.0, 2.0), (2.0, 2.0)], 'pad_color': [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)]})