Python object_detection.core.preprocessor.preprocess() Examples
The following are 30
code examples of object_detection.core.preprocessor.preprocess().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.core.preprocessor
, or try the search function
.
Example #1
Source File: preprocessor_test.py From object_detector_app with MIT License | 6 votes |
def testRandomAdjustHue(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_adjust_hue, {})) images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_hue = tensor_dict[fields.InputDataFields.image] image_original_shape = tf.shape(images_original) image_hue_shape = tf.shape(images_hue) with self.test_session() as sess: (image_original_shape_, image_hue_shape_) = sess.run( [image_original_shape, image_hue_shape]) self.assertAllEqual(image_original_shape_, image_hue_shape_)
Example #2
Source File: preprocessor_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testNormalizeImage(self): preprocess_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 256, 'target_minval': -1, 'target_maxval': 1 })] images = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] images_expected = self.expectedImagesAfterNormalization() with self.test_session() as sess: (images_, images_expected_) = sess.run( [images, images_expected]) images_shape_ = images_.shape images_expected_shape_ = images_expected_.shape expected_shape = [1, 4, 4, 3] self.assertAllEqual(images_expected_shape_, images_shape_) self.assertAllEqual(images_shape_, expected_shape) self.assertAllClose(images_, images_expected_)
Example #3
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testRandomAdjustBrightness(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_adjust_brightness, {})) images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_bright = tensor_dict[fields.InputDataFields.image] image_original_shape = tf.shape(images_original) image_bright_shape = tf.shape(images_bright) with self.test_session() as sess: (image_original_shape_, image_bright_shape_) = sess.run( [image_original_shape, image_bright_shape]) self.assertAllEqual(image_original_shape_, image_bright_shape_)
Example #4
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testRandomImageScale(self): preprocess_options = [(preprocessor.random_image_scale, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_scaled = tensor_dict[fields.InputDataFields.image] images_original_shape = tf.shape(images_original) images_scaled_shape = tf.shape(images_scaled) with self.test_session() as sess: (images_original_shape_, images_scaled_shape_) = sess.run( [images_original_shape, images_scaled_shape]) self.assertTrue( images_original_shape_[1] * 0.5 <= images_scaled_shape_[1]) self.assertTrue( images_original_shape_[1] * 2.0 >= images_scaled_shape_[1]) self.assertTrue( images_original_shape_[2] * 0.5 <= images_scaled_shape_[2]) self.assertTrue( images_original_shape_[2] * 2.0 >= images_scaled_shape_[2])
Example #5
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testRandomAdjustContrast(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_adjust_contrast, {})) images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_contrast = tensor_dict[fields.InputDataFields.image] image_original_shape = tf.shape(images_original) image_contrast_shape = tf.shape(images_contrast) with self.test_session() as sess: (image_original_shape_, image_contrast_shape_) = sess.run( [image_original_shape, image_contrast_shape]) self.assertAllEqual(image_original_shape_, image_contrast_shape_)
Example #6
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testRandomDistortColor(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_distort_color, {})) images_original = self.createTestImages() images_original_shape = tf.shape(images_original) tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_distorted_color = tensor_dict[fields.InputDataFields.image] images_distorted_color_shape = tf.shape(images_distorted_color) with self.test_session() as sess: (images_original_shape_, images_distorted_color_shape_) = sess.run( [images_original_shape, images_distorted_color_shape]) self.assertAllEqual(images_original_shape_, images_distorted_color_shape_)
Example #7
Source File: preprocessor_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testRandomAdjustContrast(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_adjust_contrast, {})) images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_contrast = tensor_dict[fields.InputDataFields.image] image_original_shape = tf.shape(images_original) image_contrast_shape = tf.shape(images_contrast) with self.test_session() as sess: (image_original_shape_, image_contrast_shape_) = sess.run( [image_original_shape, image_contrast_shape]) self.assertAllEqual(image_original_shape_, image_contrast_shape_)
Example #8
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testRandomPixelValueScale(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_pixel_value_scale, {})) images = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_min = tf.to_float(images) * 0.9 / 255.0 images_max = tf.to_float(images) * 1.1 / 255.0 images = tensor_dict[fields.InputDataFields.image] values_greater = tf.greater_equal(images, images_min) values_less = tf.less_equal(images, images_max) values_true = tf.fill([1, 4, 4, 3], True) with self.test_session() as sess: (values_greater_, values_less_, values_true_) = sess.run( [values_greater, values_less, values_true]) self.assertAllClose(values_greater_, values_true_) self.assertAllClose(values_less_, values_true_)
Example #9
Source File: preprocessor_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testRandomImageScale(self): preprocess_options = [(preprocessor.random_image_scale, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_scaled = tensor_dict[fields.InputDataFields.image] images_original_shape = tf.shape(images_original) images_scaled_shape = tf.shape(images_scaled) with self.test_session() as sess: (images_original_shape_, images_scaled_shape_) = sess.run( [images_original_shape, images_scaled_shape]) self.assertTrue( images_original_shape_[1] * 0.5 <= images_scaled_shape_[1]) self.assertTrue( images_original_shape_[1] * 2.0 >= images_scaled_shape_[1]) self.assertTrue( images_original_shape_[2] * 0.5 <= images_scaled_shape_[2]) self.assertTrue( images_original_shape_[2] * 2.0 >= images_scaled_shape_[2])
Example #10
Source File: preprocessor_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testRandomAdjustBrightness(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_adjust_brightness, {})) images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_bright = tensor_dict[fields.InputDataFields.image] image_original_shape = tf.shape(images_original) image_bright_shape = tf.shape(images_bright) with self.test_session() as sess: (image_original_shape_, image_bright_shape_) = sess.run( [image_original_shape, image_bright_shape]) self.assertAllEqual(image_original_shape_, image_bright_shape_)
Example #11
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testRandomAdjustHue(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_adjust_hue, {})) images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_hue = tensor_dict[fields.InputDataFields.image] image_original_shape = tf.shape(images_original) image_hue_shape = tf.shape(images_hue) with self.test_session() as sess: (image_original_shape_, image_hue_shape_) = sess.run( [image_original_shape, image_hue_shape]) self.assertAllEqual(image_original_shape_, image_hue_shape_)
Example #12
Source File: preprocessor_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testRandomAdjustHue(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_adjust_hue, {})) images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_hue = tensor_dict[fields.InputDataFields.image] image_original_shape = tf.shape(images_original) image_hue_shape = tf.shape(images_hue) with self.test_session() as sess: (image_original_shape_, image_hue_shape_) = sess.run( [image_original_shape, image_hue_shape]) self.assertAllEqual(image_original_shape_, image_hue_shape_)
Example #13
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testRandomVerticalFlipWithEmptyBoxes(self): preprocess_options = [(preprocessor.random_vertical_flip, {})] images = self.expectedImagesAfterNormalization() boxes = self.createEmptyTestBoxes() tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes} images_expected1 = self.expectedImagesAfterUpDownFlip() boxes_expected = self.createEmptyTestBoxes() images_expected2 = images tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] images_diff1 = tf.squared_difference(images, images_expected1) images_diff2 = tf.squared_difference(images, images_expected2) images_diff = tf.multiply(images_diff1, images_diff2) images_diff_expected = tf.zeros_like(images_diff) with self.test_session() as sess: (images_diff_, images_diff_expected_, boxes_, boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes, boxes_expected]) self.assertAllClose(boxes_, boxes_expected_) self.assertAllClose(images_diff_, images_diff_expected_)
Example #14
Source File: trainer.py From DOTA_models with Apache License 2.0 | 6 votes |
def _create_losses(input_queue, create_model_fn): """Creates loss function for a DetectionModel. Args: input_queue: BatchQueue object holding enqueued tensor_dicts. create_model_fn: A function to create the DetectionModel. """ detection_model = create_model_fn() (images, groundtruth_boxes_list, groundtruth_classes_list, groundtruth_masks_list ) = _get_inputs(input_queue, detection_model.num_classes) images = [detection_model.preprocess(image) for image in images] images = tf.concat(images, 0) if any(mask is None for mask in groundtruth_masks_list): groundtruth_masks_list = None detection_model.provide_groundtruth(groundtruth_boxes_list, groundtruth_classes_list, groundtruth_masks_list) prediction_dict = detection_model.predict(images) losses_dict = detection_model.loss(prediction_dict) for loss_tensor in losses_dict.values(): tf.losses.add_loss(loss_tensor)
Example #15
Source File: preprocessor_test.py From object_detector_app with MIT License | 6 votes |
def testRandomAdjustContrast(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_adjust_contrast, {})) images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_contrast = tensor_dict[fields.InputDataFields.image] image_original_shape = tf.shape(images_original) image_contrast_shape = tf.shape(images_contrast) with self.test_session() as sess: (image_original_shape_, image_contrast_shape_) = sess.run( [image_original_shape, image_contrast_shape]) self.assertAllEqual(image_original_shape_, image_contrast_shape_)
Example #16
Source File: preprocessor_test.py From object_detector_app with MIT License | 6 votes |
def testRandomAdjustBrightness(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_adjust_brightness, {})) images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) images_bright = tensor_dict[fields.InputDataFields.image] image_original_shape = tf.shape(images_original) image_bright_shape = tf.shape(images_bright) with self.test_session() as sess: (image_original_shape_, image_bright_shape_) = sess.run( [image_original_shape, image_bright_shape]) self.assertAllEqual(image_original_shape_, image_bright_shape_)
Example #17
Source File: preprocessor_test.py From object_detector_app with MIT License | 6 votes |
def testRandomImageScale(self): preprocess_options = [(preprocessor.random_image_scale, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_scaled = tensor_dict[fields.InputDataFields.image] images_original_shape = tf.shape(images_original) images_scaled_shape = tf.shape(images_scaled) with self.test_session() as sess: (images_original_shape_, images_scaled_shape_) = sess.run( [images_original_shape, images_scaled_shape]) self.assertTrue( images_original_shape_[1] * 0.5 <= images_scaled_shape_[1]) self.assertTrue( images_original_shape_[1] * 2.0 >= images_scaled_shape_[1]) self.assertTrue( images_original_shape_[2] * 0.5 <= images_scaled_shape_[2]) self.assertTrue( images_original_shape_[2] * 2.0 >= images_scaled_shape_[2])
Example #18
Source File: preprocessor_test.py From object_detector_app with MIT License | 6 votes |
def testNormalizeImage(self): preprocess_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 256, 'target_minval': -1, 'target_maxval': 1 })] images = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] images_expected = self.expectedImagesAfterNormalization() with self.test_session() as sess: (images_, images_expected_) = sess.run( [images, images_expected]) images_shape_ = images_.shape images_expected_shape_ = images_expected_.shape expected_shape = [1, 4, 4, 3] self.assertAllEqual(images_expected_shape_, images_shape_) self.assertAllEqual(images_shape_, expected_shape) self.assertAllClose(images_, images_expected_)
Example #19
Source File: trainer.py From object_detector_app with MIT License | 6 votes |
def _create_losses(input_queue, create_model_fn): """Creates loss function for a DetectionModel. Args: input_queue: BatchQueue object holding enqueued tensor_dicts. create_model_fn: A function to create the DetectionModel. """ detection_model = create_model_fn() (images, groundtruth_boxes_list, groundtruth_classes_list, groundtruth_masks_list ) = _get_inputs(input_queue, detection_model.num_classes) images = [detection_model.preprocess(image) for image in images] images = tf.concat(images, 0) if any(mask is None for mask in groundtruth_masks_list): groundtruth_masks_list = None detection_model.provide_groundtruth(groundtruth_boxes_list, groundtruth_classes_list, groundtruth_masks_list) prediction_dict = detection_model.predict(images) losses_dict = detection_model.loss(prediction_dict) for loss_tensor in losses_dict.values(): tf.losses.add_loss(loss_tensor)
Example #20
Source File: preprocessor_test.py From object_detector_app with MIT License | 6 votes |
def testRandomResizeMethod(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_resize_method, { 'target_size': (75, 150) })) images = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images} resized_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) resized_images = resized_tensor_dict[fields.InputDataFields.image] resized_images_shape = tf.shape(resized_images) expected_images_shape = tf.constant([1, 75, 150, 3], dtype=tf.int32) with self.test_session() as sess: (expected_images_shape_, resized_images_shape_) = sess.run( [expected_images_shape, resized_images_shape]) self.assertAllEqual(expected_images_shape_, resized_images_shape_)
Example #21
Source File: preprocessor_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testRandomResizeMethod(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_resize_method, { 'target_size': (75, 150) })) images = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images} resized_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) resized_images = resized_tensor_dict[fields.InputDataFields.image] resized_images_shape = tf.shape(resized_images) expected_images_shape = tf.constant([1, 75, 150, 3], dtype=tf.int32) with self.test_session() as sess: (expected_images_shape_, resized_images_shape_) = sess.run( [expected_images_shape, resized_images_shape]) self.assertAllEqual(expected_images_shape_, resized_images_shape_)
Example #22
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testNormalizeImage(self): preprocess_options = [(preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 256, 'target_minval': -1, 'target_maxval': 1 })] images = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] images_expected = self.expectedImagesAfterNormalization() with self.test_session() as sess: (images_, images_expected_) = sess.run( [images, images_expected]) images_shape_ = images_.shape images_expected_shape_ = images_expected_.shape expected_shape = [1, 4, 4, 3] self.assertAllEqual(images_expected_shape_, images_shape_) self.assertAllEqual(images_shape_, expected_shape) self.assertAllClose(images_, images_expected_)
Example #23
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testRandomHorizontalFlipWithEmptyBoxes(self): preprocess_options = [(preprocessor.random_horizontal_flip, {})] images = self.expectedImagesAfterNormalization() boxes = self.createEmptyTestBoxes() tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes} images_expected1 = self.expectedImagesAfterLeftRightFlip() boxes_expected = self.createEmptyTestBoxes() images_expected2 = images tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] images_diff1 = tf.squared_difference(images, images_expected1) images_diff2 = tf.squared_difference(images, images_expected2) images_diff = tf.multiply(images_diff1, images_diff2) images_diff_expected = tf.zeros_like(images_diff) with self.test_session() as sess: (images_diff_, images_diff_expected_, boxes_, boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes, boxes_expected]) self.assertAllClose(boxes_, boxes_expected_) self.assertAllClose(images_diff_, images_diff_expected_)
Example #24
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testRandomRotation90WithEmptyBoxes(self): preprocess_options = [(preprocessor.random_rotation90, {})] images = self.expectedImagesAfterNormalization() boxes = self.createEmptyTestBoxes() tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes} images_expected1 = self.expectedImagesAfterRot90() boxes_expected = self.createEmptyTestBoxes() images_expected2 = images tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images = tensor_dict[fields.InputDataFields.image] boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] images_diff1 = tf.squared_difference(images, images_expected1) images_diff2 = tf.squared_difference(images, images_expected2) images_diff = tf.multiply(images_diff1, images_diff2) images_diff_expected = tf.zeros_like(images_diff) with self.test_session() as sess: (images_diff_, images_diff_expected_, boxes_, boxes_expected_) = sess.run([images_diff, images_diff_expected, boxes, boxes_expected]) self.assertAllClose(boxes_, boxes_expected_) self.assertAllClose(images_diff_, images_diff_expected_)
Example #25
Source File: preprocessor_test.py From object_detector_app with MIT License | 5 votes |
def testRandomCropImageGrayscale(self): preprocessing_options = [(preprocessor.rgb_to_gray, {}), (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1, }), (preprocessor.random_crop_image, {})] images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) self.assertEqual(1, distorted_images.get_shape()[3]) with self.test_session() as sess: session_results = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = session_results self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #26
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def testRandomJitterBoxes(self): preprocessing_options = [] preprocessing_options.append((preprocessor.random_jitter_boxes, {})) boxes = self.createTestBoxes() boxes_shape = tf.shape(boxes) tensor_dict = {fields.InputDataFields.groundtruth_boxes: boxes} tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_boxes = tensor_dict[fields.InputDataFields.groundtruth_boxes] distorted_boxes_shape = tf.shape(distorted_boxes) with self.test_session() as sess: (boxes_shape_, distorted_boxes_shape_) = sess.run( [boxes_shape, distorted_boxes_shape]) self.assertAllEqual(boxes_shape_, distorted_boxes_shape_)
Example #27
Source File: trainer.py From DOTA_models with Apache License 2.0 | 5 votes |
def _create_input_queue(batch_size_per_clone, create_tensor_dict_fn, batch_queue_capacity, num_batch_queue_threads, prefetch_queue_capacity, data_augmentation_options): """Sets up reader, prefetcher and returns input queue. Args: batch_size_per_clone: batch size to use per clone. create_tensor_dict_fn: function to create tensor dictionary. batch_queue_capacity: maximum number of elements to store within a queue. num_batch_queue_threads: number of threads to use for batching. prefetch_queue_capacity: maximum capacity of the queue used to prefetch assembled batches. data_augmentation_options: a list of tuples, where each tuple contains a data augmentation function and a dictionary containing arguments and their values (see preprocessor.py). Returns: input queue: a batcher.BatchQueue object holding enqueued tensor_dicts (which hold images, boxes and targets). To get a batch of tensor_dicts, call input_queue.Dequeue(). """ tensor_dict = create_tensor_dict_fn() tensor_dict[fields.InputDataFields.image] = tf.expand_dims( tensor_dict[fields.InputDataFields.image], 0) images = tensor_dict[fields.InputDataFields.image] float_images = tf.to_float(images) tensor_dict[fields.InputDataFields.image] = float_images if data_augmentation_options: tensor_dict = preprocessor.preprocess(tensor_dict, data_augmentation_options) input_queue = batcher.BatchQueue( tensor_dict, batch_size=batch_size_per_clone, batch_queue_capacity=batch_queue_capacity, num_batch_queue_threads=num_batch_queue_threads, prefetch_queue_capacity=prefetch_queue_capacity) return input_queue
Example #28
Source File: preprocessor_test.py From object_detector_app with MIT License | 5 votes |
def testRandomCropImageWithBoxOutOfImage(self): preprocessing_options = [] preprocessing_options.append((preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 })) preprocessing_options.append((preprocessor.random_crop_image, {})) images = self.createTestImages() boxes = self.createTestBoxesOutOfImage() labels = self.createTestLabels() tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #29
Source File: preprocessor_test.py From object_detector_app with MIT License | 5 votes |
def testSSDRandomCropPad(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_pad, {})] tensor_dict = {fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels} distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run([ boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank ]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #30
Source File: preprocessor_test.py From object_detector_app with MIT License | 5 votes |
def testRunRetainBoxesAboveThresholdWithMasks(self): boxes = self.createTestBoxes() labels = self.createTestLabels() label_scores = self.createTestLabelScores() masks = self.createTestMasks() tensor_dict = { fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_label_scores: label_scores, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [ (preprocessor.retain_boxes_above_threshold, {'threshold': 0.6}) ] retained_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) retained_masks = retained_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (retained_masks_, expected_masks_) = sess.run( [retained_masks, self.expectedMasksAfterThresholding()]) self.assertAllClose(retained_masks_, expected_masks_)