Python object_detection.core.preprocessor.resize_to_range() Examples
The following are 30
code examples of object_detection.core.preprocessor.resize_to_range().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.core.preprocessor
, or try the search function
.
Example #1
Source File: preprocessor_test.py From HereIsWally with MIT License | 6 votes |
def testResizeToRangeSameMinMax(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[312, 312, 3], [299, 299, 3]] min_dim = 320 max_dim = 320 expected_shape_list = [[320, 320, 3], [320, 320, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.random_uniform(in_shape) out_image = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape) self.assertAllEqual(out_image_shape, expected_shape)
Example #2
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testResizeToRangeWithMasksPreservesStaticSpatialShape(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] min_dim = 50 max_dim = 100 expected_image_shape_list = [[75, 50, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 75, 50], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks, _ = preprocessor.resize_to_range( in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim) self.assertAllEqual(out_masks.get_shape().as_list(), expected_mask_shape) self.assertAllEqual(out_image.get_shape().as_list(), expected_image_shape)
Example #3
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testResizeToRangeWithPadToMaxDimensionReturnsCorrectTensor(self): in_image_np = np.array([[[0, 1, 2]]], np.float32) ex_image_np = np.array( [[[0, 1, 2], [123.68, 116.779, 103.939]], [[123.68, 116.779, 103.939], [123.68, 116.779, 103.939]]], np.float32) min_dim = 1 max_dim = 2 in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim, pad_to_max_dimension=True, per_channel_pad_value=(123.68, 116.779, 103.939)) with self.test_session() as sess: out_image_np = sess.run(out_image, feed_dict={in_image: in_image_np}) self.assertAllClose(ex_image_np, out_image_np)
Example #4
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testResizeToRangeWithPadToMaxDimensionReturnsCorrectShapes(self): in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[100, 100, 3], [100, 100, 3], [100, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim, pad_to_max_dimension=True) self.assertAllEqual(out_image.shape.as_list(), expected_shape) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run( out_image_shape, feed_dict={in_image: np.random.randn(*in_shape)}) self.assertAllEqual(out_image_shape, expected_shape)
Example #5
Source File: preprocessor_test.py From object_detector_app with MIT License | 6 votes |
def testResizeToRange(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.random_uniform(in_shape) out_image = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape) self.assertAllEqual(out_image_shape, expected_shape)
Example #6
Source File: preprocessor_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testResizeToRangeSameMinMax(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[312, 312, 3], [299, 299, 3]] min_dim = 320 max_dim = 320 expected_shape_list = [[320, 320, 3], [320, 320, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.random_uniform(in_shape) out_image = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape) self.assertAllEqual(out_image_shape, expected_shape)
Example #7
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testResizeToRangeSameMinMax(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[312, 312, 3], [299, 299, 3]] min_dim = 320 max_dim = 320 expected_shape_list = [[320, 320, 3], [320, 320, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.random_uniform(in_shape) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape) self.assertAllEqual(out_image_shape, expected_shape)
Example #8
Source File: preprocessor_test.py From Person-Detection-and-Tracking with MIT License | 6 votes |
def testResizeToRangeWithDynamicSpatialShape(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape, feed_dict={in_image: np.random.randn(*in_shape)}) self.assertAllEqual(out_image_shape, expected_shape)
Example #9
Source File: preprocessor_test.py From Person-Detection-and-Tracking with MIT License | 6 votes |
def testResizeToRangeWithPadToMaxDimensionReturnsCorrectShapes(self): in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[100, 100, 3], [100, 100, 3], [100, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim, pad_to_max_dimension=True) self.assertAllEqual(out_image.shape.as_list(), expected_shape) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run( out_image_shape, feed_dict={in_image: np.random.randn(*in_shape)}) self.assertAllEqual(out_image_shape, expected_shape)
Example #10
Source File: preprocessor_test.py From Person-Detection-and-Tracking with MIT License | 6 votes |
def testResizeToRangeWithPadToMaxDimensionReturnsCorrectTensor(self): in_image_np = np.array([[[0, 1, 2]]], np.float32) ex_image_np = np.array( [[[0, 1, 2], [123.68, 116.779, 103.939]], [[123.68, 116.779, 103.939], [123.68, 116.779, 103.939]]], np.float32) min_dim = 1 max_dim = 2 in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim, pad_to_max_dimension=True, per_channel_pad_value=(123.68, 116.779, 103.939)) with self.test_session() as sess: out_image_np = sess.run(out_image, feed_dict={in_image: in_image_np}) self.assertAllClose(ex_image_np, out_image_np)
Example #11
Source File: preprocessor_test.py From Person-Detection-and-Tracking with MIT License | 6 votes |
def testResizeToRangeWithMasksPreservesStaticSpatialShape(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] min_dim = 50 max_dim = 100 expected_image_shape_list = [[75, 50, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 75, 50], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks, _ = preprocessor.resize_to_range( in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim) self.assertAllEqual(out_masks.get_shape().as_list(), expected_mask_shape) self.assertAllEqual(out_image.get_shape().as_list(), expected_image_shape)
Example #12
Source File: preprocessor_test.py From Person-Detection-and-Tracking with MIT License | 6 votes |
def testResizeToRangeSameMinMax(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[312, 312, 3], [299, 299, 3]] min_dim = 320 max_dim = 320 expected_shape_list = [[320, 320, 3], [320, 320, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.random_uniform(in_shape) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape) self.assertAllEqual(out_image_shape, expected_shape)
Example #13
Source File: preprocessor_test.py From garbage-object-detection-tensorflow with MIT License | 6 votes |
def testResizeToRangeWithDynamicSpatialShape(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape, feed_dict={in_image: np.random.randn(*in_shape)}) self.assertAllEqual(out_image_shape, expected_shape)
Example #14
Source File: preprocessor_test.py From garbage-object-detection-tensorflow with MIT License | 6 votes |
def testResizeToRangeWithMasksPreservesStaticSpatialShape(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] min_dim = 50 max_dim = 100 expected_image_shape_list = [[75, 50, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 75, 50], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks = preprocessor.resize_to_range( in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim) self.assertAllEqual(out_masks.get_shape().as_list(), expected_mask_shape) self.assertAllEqual(out_image.get_shape().as_list(), expected_image_shape)
Example #15
Source File: preprocessor_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testResizeToRange(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.random_uniform(in_shape) out_image = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape) self.assertAllEqual(out_image_shape, expected_shape)
Example #16
Source File: preprocessor_test.py From HereIsWally with MIT License | 6 votes |
def testResizeToRange(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.random_uniform(in_shape) out_image = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape) self.assertAllEqual(out_image_shape, expected_shape)
Example #17
Source File: preprocessor_test.py From yolo_v2 with Apache License 2.0 | 6 votes |
def testResizeToRangeWithDynamicSpatialShape(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape, feed_dict={in_image: np.random.randn(*in_shape)}) self.assertAllEqual(out_image_shape, expected_shape)
Example #18
Source File: preprocessor_test.py From yolo_v2 with Apache License 2.0 | 6 votes |
def testResizeToRangeWithMasksPreservesStaticSpatialShape(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] min_dim = 50 max_dim = 100 expected_image_shape_list = [[75, 50, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 75, 50], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks = preprocessor.resize_to_range( in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim) self.assertAllEqual(out_masks.get_shape().as_list(), expected_mask_shape) self.assertAllEqual(out_image.get_shape().as_list(), expected_image_shape)
Example #19
Source File: preprocessor_test.py From yolo_v2 with Apache License 2.0 | 6 votes |
def testResizeToRangeSameMinMax(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[312, 312, 3], [299, 299, 3]] min_dim = 320 max_dim = 320 expected_shape_list = [[320, 320, 3], [320, 320, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.random_uniform(in_shape) out_image = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape) self.assertAllEqual(out_image_shape, expected_shape)
Example #20
Source File: preprocessor_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 6 votes |
def testResizeToRangeWithDynamicSpatialShape(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape, feed_dict={in_image: np.random.randn(*in_shape)}) self.assertAllEqual(out_image_shape, expected_shape)
Example #21
Source File: preprocessor_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 6 votes |
def testResizeToRangeWithMasksPreservesStaticSpatialShape(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] min_dim = 50 max_dim = 100 expected_image_shape_list = [[75, 50, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 75, 50], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks, _ = preprocessor.resize_to_range( in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim) self.assertAllEqual(out_masks.get_shape().as_list(), expected_mask_shape) self.assertAllEqual(out_image.get_shape().as_list(), expected_image_shape)
Example #22
Source File: preprocessor_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 6 votes |
def testResizeToRangeSameMinMax(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[312, 312, 3], [299, 299, 3]] min_dim = 320 max_dim = 320 expected_shape_list = [[320, 320, 3], [320, 320, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.random_uniform(in_shape) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape) self.assertAllEqual(out_image_shape, expected_shape)
Example #23
Source File: preprocessor_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def testResizeToRangeWithDynamicSpatialShape(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape, feed_dict={in_image: np.random.randn(*in_shape)}) self.assertAllEqual(out_image_shape, expected_shape)
Example #24
Source File: preprocessor_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def testResizeToRangeWithMasksPreservesStaticSpatialShape(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] min_dim = 50 max_dim = 100 expected_image_shape_list = [[75, 50, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 75, 50], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks = preprocessor.resize_to_range( in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim) self.assertAllEqual(out_masks.get_shape().as_list(), expected_mask_shape) self.assertAllEqual(out_image.get_shape().as_list(), expected_image_shape)
Example #25
Source File: preprocessor_test.py From tensorflow with BSD 2-Clause "Simplified" License | 6 votes |
def testResizeToRangeWithDynamicSpatialShape(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape, feed_dict={in_image: np.random.randn(*in_shape)}) self.assertAllEqual(out_image_shape, expected_shape)
Example #26
Source File: preprocessor_test.py From tensorflow with BSD 2-Clause "Simplified" License | 6 votes |
def testResizeToRangeWithMasksPreservesStaticSpatialShape(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] min_dim = 50 max_dim = 100 expected_image_shape_list = [[75, 50, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 75, 50], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks = preprocessor.resize_to_range( in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim) self.assertAllEqual(out_masks.get_shape().as_list(), expected_mask_shape) self.assertAllEqual(out_image.get_shape().as_list(), expected_image_shape)
Example #27
Source File: preprocessor_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def testResizeToRangeWithDynamicSpatialShape(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape, feed_dict={in_image: np.random.randn(*in_shape)}) self.assertAllEqual(out_image_shape, expected_shape)
Example #28
Source File: preprocessor_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def testResizeToRangeWithMasksPreservesStaticSpatialShape(self): """Tests image resizing, checking output sizes.""" in_image_shape_list = [[60, 40, 3], [15, 30, 3]] in_masks_shape_list = [[15, 60, 40], [10, 15, 30]] min_dim = 50 max_dim = 100 expected_image_shape_list = [[75, 50, 3], [50, 100, 3]] expected_masks_shape_list = [[15, 75, 50], [10, 50, 100]] for (in_image_shape, expected_image_shape, in_masks_shape, expected_mask_shape) in zip(in_image_shape_list, expected_image_shape_list, in_masks_shape_list, expected_masks_shape_list): in_image = tf.random_uniform(in_image_shape) in_masks = tf.random_uniform(in_masks_shape) out_image, out_masks, _ = preprocessor.resize_to_range( in_image, in_masks, min_dimension=min_dim, max_dimension=max_dim) self.assertAllEqual(out_masks.get_shape().as_list(), expected_mask_shape) self.assertAllEqual(out_image.get_shape().as_list(), expected_image_shape)
Example #29
Source File: preprocessor_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def testResizeToRangeSameMinMax(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[312, 312, 3], [299, 299, 3]] min_dim = 320 max_dim = 320 expected_shape_list = [[320, 320, 3], [320, 320, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.random_uniform(in_shape) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape) self.assertAllEqual(out_image_shape, expected_shape)
Example #30
Source File: preprocessor_test.py From ros_tensorflow with Apache License 2.0 | 6 votes |
def testResizeToRangeWithDynamicSpatialShape(self): """Tests image resizing, checking output sizes.""" in_shape_list = [[60, 40, 3], [15, 30, 3], [15, 50, 3]] min_dim = 50 max_dim = 100 expected_shape_list = [[75, 50, 3], [50, 100, 3], [30, 100, 3]] for in_shape, expected_shape in zip(in_shape_list, expected_shape_list): in_image = tf.placeholder(tf.float32, shape=(None, None, 3)) out_image, _ = preprocessor.resize_to_range( in_image, min_dimension=min_dim, max_dimension=max_dim) out_image_shape = tf.shape(out_image) with self.test_session() as sess: out_image_shape = sess.run(out_image_shape, feed_dict={in_image: np.random.randn(*in_shape)}) self.assertAllEqual(out_image_shape, expected_shape)