Python object_detection.core.preprocessor.ssd_random_crop_fixed_aspect_ratio() Examples
The following are 30
code examples of object_detection.core.preprocessor.ssd_random_crop_fixed_aspect_ratio().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.core.preprocessor
, or try the search function
.
Example #1
Source File: preprocessor_test.py From MBMD with MIT License | 5 votes |
def testSSDRandomCropFixedAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #2
Source File: preprocessor_test.py From AniSeg with Apache License 2.0 | 5 votes |
def testSSDRandomCropFixedAspectRatioWithCache(self): preprocess_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False)
Example #3
Source File: preprocessor_builder_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): preprocessor_text_proto = """ ssd_random_crop_fixed_aspect_ratio { operations { min_object_covered: 0.0 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 random_coef: 0.375 } operations { min_object_covered: 0.25 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 random_coef: 0.375 } aspect_ratio: 0.875 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio': 0.875, 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'random_coef': [0.375, 0.375]})
Example #4
Source File: preprocessor_builder_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): preprocessor_text_proto = """ ssd_random_crop_fixed_aspect_ratio { operations { min_object_covered: 0.0 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 random_coef: 0.375 } operations { min_object_covered: 0.25 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 random_coef: 0.375 } aspect_ratio: 0.875 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio': 0.875, 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'random_coef': [0.375, 0.375]})
Example #5
Source File: preprocessor_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testSSDRandomCropFixedAspectRatioWithCache(self): preprocess_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False)
Example #6
Source File: preprocessor_builder_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): preprocessor_text_proto = """ ssd_random_crop_fixed_aspect_ratio { operations { min_object_covered: 0.0 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 clip_boxes: False random_coef: 0.375 } operations { min_object_covered: 0.25 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 clip_boxes: True random_coef: 0.375 } aspect_ratio: 0.875 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio': 0.875, 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'clip_boxes': [False, True], 'random_coef': [0.375, 0.375]})
Example #7
Source File: preprocessor_test.py From models with Apache License 2.0 | 5 votes |
def testSSDRandomCropFixedAspectRatioWithCache(self): preprocess_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False)
Example #8
Source File: preprocessor_builder_test.py From models with Apache License 2.0 | 5 votes |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): preprocessor_text_proto = """ ssd_random_crop_fixed_aspect_ratio { operations { min_object_covered: 0.0 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 clip_boxes: False random_coef: 0.375 } operations { min_object_covered: 0.25 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 clip_boxes: True random_coef: 0.375 } aspect_ratio: 0.875 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio': 0.875, 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'clip_boxes': [False, True], 'random_coef': [0.375, 0.375]})
Example #9
Source File: preprocessor_test.py From motion-rcnn with MIT License | 5 votes |
def testSSDRandomCropFixedAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #10
Source File: preprocessor_test.py From motion-rcnn with MIT License | 5 votes |
def testSSDRandomCropFixedAspectRatioWithMasksAndKeypoints(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = self.createTestMasks() keypoints = self.createTestKeypoints() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks, fields.InputDataFields.groundtruth_keypoints: keypoints, } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True, include_keypoints=True) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #11
Source File: preprocessor_builder_test.py From motion-rcnn with MIT License | 5 votes |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): preprocessor_text_proto = """ ssd_random_crop_fixed_aspect_ratio { operations { min_object_covered: 0.0 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 random_coef: 0.375 } operations { min_object_covered: 0.25 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 random_coef: 0.375 } aspect_ratio: 0.875 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio': 0.875, 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'random_coef': [0.375, 0.375]})
Example #12
Source File: preprocessor_test.py From mtl-ssl with Apache License 2.0 | 5 votes |
def testSSDRandomCropFixedAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #13
Source File: preprocessor_test.py From Accident-Detection-on-Indian-Roads with GNU Affero General Public License v3.0 | 5 votes |
def testSSDRandomCropFixedAspectRatioWithCache(self): preprocess_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False)
Example #14
Source File: preprocessor_builder_test.py From MBMD with MIT License | 5 votes |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): preprocessor_text_proto = """ ssd_random_crop_fixed_aspect_ratio { operations { min_object_covered: 0.0 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 random_coef: 0.375 } operations { min_object_covered: 0.25 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 random_coef: 0.375 } aspect_ratio: 0.875 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio': 0.875, 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'random_coef': [0.375, 0.375]})
Example #15
Source File: preprocessor_test.py From MBMD with MIT License | 5 votes |
def testSSDRandomCropFixedAspectRatioWithMasksAndKeypoints(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = self.createTestMasks() keypoints = self.createTestKeypoints() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks, fields.InputDataFields.groundtruth_keypoints: keypoints, } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True, include_keypoints=True) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #16
Source File: preprocessor_test.py From Elphas with Apache License 2.0 | 5 votes |
def testSSDRandomCropFixedAspectRatioWithCache(self): preprocess_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False)
Example #17
Source File: preprocessor_builder_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): preprocessor_text_proto = """ ssd_random_crop_fixed_aspect_ratio { operations { min_object_covered: 0.0 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 random_coef: 0.375 } operations { min_object_covered: 0.25 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 random_coef: 0.375 } aspect_ratio: 0.875 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio': 0.875, 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'random_coef': [0.375, 0.375]})
Example #18
Source File: preprocessor_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def testSSDRandomCropFixedAspectRatioWithMasksAndKeypoints(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = self.createTestMasks() keypoints = self.createTestKeypoints() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks, fields.InputDataFields.groundtruth_keypoints: keypoints, } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True, include_keypoints=True) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #19
Source File: preprocessor_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def testSSDRandomCropFixedAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #20
Source File: preprocessor_builder_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): preprocessor_text_proto = """ ssd_random_crop_fixed_aspect_ratio { operations { min_object_covered: 0.0 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 clip_boxes: False random_coef: 0.375 } operations { min_object_covered: 0.25 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 clip_boxes: True random_coef: 0.375 } aspect_ratio: 0.875 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio': 0.875, 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'clip_boxes': [False, True], 'random_coef': [0.375, 0.375]})
Example #21
Source File: preprocessor_builder_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): preprocessor_text_proto = """ ssd_random_crop_fixed_aspect_ratio { operations { min_object_covered: 0.0 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 clip_boxes: False random_coef: 0.375 } operations { min_object_covered: 0.25 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 clip_boxes: True random_coef: 0.375 } aspect_ratio: 0.875 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio': 0.875, 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'clip_boxes': [False, True], 'random_coef': [0.375, 0.375]})
Example #22
Source File: preprocessor_builder_test.py From hands-detection with MIT License | 5 votes |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): preprocessor_text_proto = """ ssd_random_crop_fixed_aspect_ratio { operations { min_object_covered: 0.0 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 random_coef: 0.375 } operations { min_object_covered: 0.25 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 random_coef: 0.375 } aspect_ratio: 0.875 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio': 0.875, 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'random_coef': [0.375, 0.375]})
Example #23
Source File: preprocessor_test.py From hands-detection with MIT License | 5 votes |
def testSSDRandomCropFixedAspectRatioWithMasksAndKeypoints(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = self.createTestMasks() keypoints = self.createTestKeypoints() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks, fields.InputDataFields.groundtruth_keypoints: keypoints, } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True, include_keypoints=True) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #24
Source File: preprocessor_test.py From hands-detection with MIT License | 5 votes |
def testSSDRandomCropFixedAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #25
Source File: preprocessor_builder_test.py From moveo_ros with MIT License | 5 votes |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): preprocessor_text_proto = """ ssd_random_crop_fixed_aspect_ratio { operations { min_object_covered: 0.0 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 random_coef: 0.375 } operations { min_object_covered: 0.25 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 random_coef: 0.375 } aspect_ratio: 0.875 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio': 0.875, 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'random_coef': [0.375, 0.375]})
Example #26
Source File: preprocessor_test.py From moveo_ros with MIT License | 5 votes |
def testSSDRandomCropFixedAspectRatioWithMasksAndKeypoints(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = self.createTestMasks() keypoints = self.createTestKeypoints() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks, fields.InputDataFields.groundtruth_keypoints: keypoints, } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True, include_keypoints=True) distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #27
Source File: preprocessor_test.py From moveo_ros with MIT License | 5 votes |
def testSSDRandomCropFixedAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #28
Source File: preprocessor_test.py From DOTA_models with Apache License 2.0 | 5 votes |
def testSSDRandomCropFixedAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() preprocessing_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } distorted_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) distorted_images = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] images_rank = tf.rank(images) distorted_images_rank = tf.rank(distorted_images) boxes_rank = tf.rank(boxes) distorted_boxes_rank = tf.rank(distorted_boxes) with self.test_session() as sess: (boxes_rank_, distorted_boxes_rank_, images_rank_, distorted_images_rank_) = sess.run( [boxes_rank, distorted_boxes_rank, images_rank, distorted_images_rank]) self.assertAllEqual(boxes_rank_, distorted_boxes_rank_) self.assertAllEqual(images_rank_, distorted_images_rank_)
Example #29
Source File: preprocessor_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testSSDRandomCropFixedAspectRatioWithCache(self): preprocess_options = [ (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1 }), (preprocessor.ssd_random_crop_fixed_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False)
Example #30
Source File: preprocessor_builder_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def test_build_ssd_random_crop_fixed_aspect_ratio(self): preprocessor_text_proto = """ ssd_random_crop_fixed_aspect_ratio { operations { min_object_covered: 0.0 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.0 random_coef: 0.375 } operations { min_object_covered: 0.25 min_area: 0.5 max_area: 1.0 overlap_thresh: 0.25 random_coef: 0.375 } aspect_ratio: 0.875 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.ssd_random_crop_fixed_aspect_ratio) self.assertEqual(args, {'min_object_covered': [0.0, 0.25], 'aspect_ratio': 0.875, 'area_range': [(0.5, 1.0), (0.5, 1.0)], 'overlap_thresh': [0.0, 0.25], 'random_coef': [0.375, 0.375]})