Python object_detection.core.preprocessor.random_rgb_to_gray() Examples
The following are 30
code examples of object_detection.core.preprocessor.random_rgb_to_gray().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.core.preprocessor
, or try the search function
.
Example #1
Source File: preprocessor_builder_test.py From Elphas with Apache License 2.0 | 5 votes |
def test_build_random_rgb_to_gray(self): preprocessor_text_proto = """ random_rgb_to_gray { probability: 0.8 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_rgb_to_gray) self.assert_dictionary_close(args, {'probability': 0.8})
Example #2
Source File: preprocessor_test.py From models with Apache License 2.0 | 5 votes |
def testRandomRGBtoGrayWithCache(self): preprocess_options = [( preprocessor.random_rgb_to_gray, {'probability': 0.5})] self._testPreprocessorCache(preprocess_options, test_boxes=False, test_masks=False, test_keypoints=False)
Example #3
Source File: preprocessor_test.py From Accident-Detection-on-Indian-Roads with GNU Affero General Public License v3.0 | 5 votes |
def testRandomCropImageWithCache(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {'probability': 0.5}), (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1, }), (preprocessor.random_crop_image, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False)
Example #4
Source File: preprocessor_builder_test.py From models with Apache License 2.0 | 5 votes |
def test_build_random_rgb_to_gray(self): preprocessor_text_proto = """ random_rgb_to_gray { probability: 0.8 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_rgb_to_gray) self.assert_dictionary_close(args, {'probability': 0.8})
Example #5
Source File: preprocessor_test.py From motion-rcnn with MIT License | 5 votes |
def testRandomRGBtoGray(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_gray = tensor_dict[fields.InputDataFields.image] images_gray_r, images_gray_g, images_gray_b = tf.split( value=images_gray, num_or_size_splits=3, axis=3) images_r, images_g, images_b = tf.split( value=images_original, num_or_size_splits=3, axis=3) images_r_diff1 = tf.squared_difference(tf.to_float(images_r), tf.to_float(images_gray_r)) images_r_diff2 = tf.squared_difference(tf.to_float(images_gray_r), tf.to_float(images_gray_g)) images_r_diff = tf.multiply(images_r_diff1, images_r_diff2) images_g_diff1 = tf.squared_difference(tf.to_float(images_g), tf.to_float(images_gray_g)) images_g_diff2 = tf.squared_difference(tf.to_float(images_gray_g), tf.to_float(images_gray_b)) images_g_diff = tf.multiply(images_g_diff1, images_g_diff2) images_b_diff1 = tf.squared_difference(tf.to_float(images_b), tf.to_float(images_gray_b)) images_b_diff2 = tf.squared_difference(tf.to_float(images_gray_b), tf.to_float(images_gray_r)) images_b_diff = tf.multiply(images_b_diff1, images_b_diff2) image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1]) with self.test_session() as sess: (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = sess.run( [images_r_diff, images_g_diff, images_b_diff, image_zero1]) self.assertAllClose(images_r_diff_, image_zero1_) self.assertAllClose(images_g_diff_, image_zero1_) self.assertAllClose(images_b_diff_, image_zero1_)
Example #6
Source File: preprocessor_test.py From models with Apache License 2.0 | 5 votes |
def testRandomCropImageWithCache(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {'probability': 0.5}), (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1, }), (preprocessor.random_crop_image, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False)
Example #7
Source File: preprocessor_builder_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_build_random_rgb_to_gray(self): preprocessor_text_proto = """ random_rgb_to_gray { probability: 0.8 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_rgb_to_gray) self.assert_dictionary_close(args, {'probability': 0.8})
Example #8
Source File: preprocessor_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testRandomCropImageWithCache(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {'probability': 0.5}), (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1, }), (preprocessor.random_crop_image, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False)
Example #9
Source File: preprocessor_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testRandomRGBtoGrayWithCache(self): preprocess_options = [( preprocessor.random_rgb_to_gray, {'probability': 0.5})] self._testPreprocessorCache(preprocess_options, test_boxes=False, test_masks=False, test_keypoints=False)
Example #10
Source File: preprocessor_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testRandomRGBtoGray(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_gray = tensor_dict[fields.InputDataFields.image] images_gray_r, images_gray_g, images_gray_b = tf.split( value=images_gray, num_or_size_splits=3, axis=3) images_r, images_g, images_b = tf.split( value=images_original, num_or_size_splits=3, axis=3) images_r_diff1 = tf.squared_difference(tf.to_float(images_r), tf.to_float(images_gray_r)) images_r_diff2 = tf.squared_difference(tf.to_float(images_gray_r), tf.to_float(images_gray_g)) images_r_diff = tf.multiply(images_r_diff1, images_r_diff2) images_g_diff1 = tf.squared_difference(tf.to_float(images_g), tf.to_float(images_gray_g)) images_g_diff2 = tf.squared_difference(tf.to_float(images_gray_g), tf.to_float(images_gray_b)) images_g_diff = tf.multiply(images_g_diff1, images_g_diff2) images_b_diff1 = tf.squared_difference(tf.to_float(images_b), tf.to_float(images_gray_b)) images_b_diff2 = tf.squared_difference(tf.to_float(images_gray_b), tf.to_float(images_gray_r)) images_b_diff = tf.multiply(images_b_diff1, images_b_diff2) image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1]) with self.test_session() as sess: (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = sess.run( [images_r_diff, images_g_diff, images_b_diff, image_zero1]) self.assertAllClose(images_r_diff_, image_zero1_) self.assertAllClose(images_g_diff_, image_zero1_) self.assertAllClose(images_b_diff_, image_zero1_)
Example #11
Source File: preprocessor_test.py From models with Apache License 2.0 | 5 votes |
def testRandomRGBtoGray(self): def graph_fn(): preprocess_options = [(preprocessor.random_rgb_to_gray, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_gray = tensor_dict[fields.InputDataFields.image] images_gray_r, images_gray_g, images_gray_b = tf.split( value=images_gray, num_or_size_splits=3, axis=3) images_r, images_g, images_b = tf.split( value=images_original, num_or_size_splits=3, axis=3) images_r_diff1 = tf.squared_difference( tf.cast(images_r, dtype=tf.float32), tf.cast(images_gray_r, dtype=tf.float32)) images_r_diff2 = tf.squared_difference( tf.cast(images_gray_r, dtype=tf.float32), tf.cast(images_gray_g, dtype=tf.float32)) images_r_diff = tf.multiply(images_r_diff1, images_r_diff2) images_g_diff1 = tf.squared_difference( tf.cast(images_g, dtype=tf.float32), tf.cast(images_gray_g, dtype=tf.float32)) images_g_diff2 = tf.squared_difference( tf.cast(images_gray_g, dtype=tf.float32), tf.cast(images_gray_b, dtype=tf.float32)) images_g_diff = tf.multiply(images_g_diff1, images_g_diff2) images_b_diff1 = tf.squared_difference( tf.cast(images_b, dtype=tf.float32), tf.cast(images_gray_b, dtype=tf.float32)) images_b_diff2 = tf.squared_difference( tf.cast(images_gray_b, dtype=tf.float32), tf.cast(images_gray_r, dtype=tf.float32)) images_b_diff = tf.multiply(images_b_diff1, images_b_diff2) image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1]) return [images_r_diff, images_g_diff, images_b_diff, image_zero1] (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = self.execute_cpu(graph_fn, []) self.assertAllClose(images_r_diff_, image_zero1_) self.assertAllClose(images_g_diff_, image_zero1_) self.assertAllClose(images_b_diff_, image_zero1_)
Example #12
Source File: preprocessor_builder_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def test_build_random_rgb_to_gray(self): preprocessor_text_proto = """ random_rgb_to_gray { probability: 0.8 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_rgb_to_gray) self.assert_dictionary_close(args, {'probability': 0.8})
Example #13
Source File: preprocessor_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testRandomRGBtoGray(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_gray = tensor_dict[fields.InputDataFields.image] images_gray_r, images_gray_g, images_gray_b = tf.split( value=images_gray, num_or_size_splits=3, axis=3) images_r, images_g, images_b = tf.split( value=images_original, num_or_size_splits=3, axis=3) images_r_diff1 = tf.squared_difference(tf.to_float(images_r), tf.to_float(images_gray_r)) images_r_diff2 = tf.squared_difference(tf.to_float(images_gray_r), tf.to_float(images_gray_g)) images_r_diff = tf.multiply(images_r_diff1, images_r_diff2) images_g_diff1 = tf.squared_difference(tf.to_float(images_g), tf.to_float(images_gray_g)) images_g_diff2 = tf.squared_difference(tf.to_float(images_gray_g), tf.to_float(images_gray_b)) images_g_diff = tf.multiply(images_g_diff1, images_g_diff2) images_b_diff1 = tf.squared_difference(tf.to_float(images_b), tf.to_float(images_gray_b)) images_b_diff2 = tf.squared_difference(tf.to_float(images_gray_b), tf.to_float(images_gray_r)) images_b_diff = tf.multiply(images_b_diff1, images_b_diff2) image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1]) with self.test_session() as sess: (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = sess.run( [images_r_diff, images_g_diff, images_b_diff, image_zero1]) self.assertAllClose(images_r_diff_, image_zero1_) self.assertAllClose(images_g_diff_, image_zero1_) self.assertAllClose(images_b_diff_, image_zero1_)
Example #14
Source File: preprocessor_builder_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def test_build_random_rgb_to_gray(self): preprocessor_text_proto = """ random_rgb_to_gray { probability: 0.8 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_rgb_to_gray) self.assert_dictionary_close(args, {'probability': 0.8})
Example #15
Source File: preprocessor_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testRandomRGBtoGray(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_gray = tensor_dict[fields.InputDataFields.image] images_gray_r, images_gray_g, images_gray_b = tf.split( value=images_gray, num_or_size_splits=3, axis=3) images_r, images_g, images_b = tf.split( value=images_original, num_or_size_splits=3, axis=3) images_r_diff1 = tf.squared_difference(tf.to_float(images_r), tf.to_float(images_gray_r)) images_r_diff2 = tf.squared_difference(tf.to_float(images_gray_r), tf.to_float(images_gray_g)) images_r_diff = tf.multiply(images_r_diff1, images_r_diff2) images_g_diff1 = tf.squared_difference(tf.to_float(images_g), tf.to_float(images_gray_g)) images_g_diff2 = tf.squared_difference(tf.to_float(images_gray_g), tf.to_float(images_gray_b)) images_g_diff = tf.multiply(images_g_diff1, images_g_diff2) images_b_diff1 = tf.squared_difference(tf.to_float(images_b), tf.to_float(images_gray_b)) images_b_diff2 = tf.squared_difference(tf.to_float(images_gray_b), tf.to_float(images_gray_r)) images_b_diff = tf.multiply(images_b_diff1, images_b_diff2) image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1]) with self.test_session() as sess: (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = sess.run( [images_r_diff, images_g_diff, images_b_diff, image_zero1]) self.assertAllClose(images_r_diff_, image_zero1_) self.assertAllClose(images_g_diff_, image_zero1_) self.assertAllClose(images_b_diff_, image_zero1_)
Example #16
Source File: preprocessor_test.py From AniSeg with Apache License 2.0 | 5 votes |
def testRandomRGBtoGray(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_gray = tensor_dict[fields.InputDataFields.image] images_gray_r, images_gray_g, images_gray_b = tf.split( value=images_gray, num_or_size_splits=3, axis=3) images_r, images_g, images_b = tf.split( value=images_original, num_or_size_splits=3, axis=3) images_r_diff1 = tf.squared_difference(tf.to_float(images_r), tf.to_float(images_gray_r)) images_r_diff2 = tf.squared_difference(tf.to_float(images_gray_r), tf.to_float(images_gray_g)) images_r_diff = tf.multiply(images_r_diff1, images_r_diff2) images_g_diff1 = tf.squared_difference(tf.to_float(images_g), tf.to_float(images_gray_g)) images_g_diff2 = tf.squared_difference(tf.to_float(images_gray_g), tf.to_float(images_gray_b)) images_g_diff = tf.multiply(images_g_diff1, images_g_diff2) images_b_diff1 = tf.squared_difference(tf.to_float(images_b), tf.to_float(images_gray_b)) images_b_diff2 = tf.squared_difference(tf.to_float(images_gray_b), tf.to_float(images_gray_r)) images_b_diff = tf.multiply(images_b_diff1, images_b_diff2) image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1]) with self.test_session() as sess: (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = sess.run( [images_r_diff, images_g_diff, images_b_diff, image_zero1]) self.assertAllClose(images_r_diff_, image_zero1_) self.assertAllClose(images_g_diff_, image_zero1_) self.assertAllClose(images_b_diff_, image_zero1_)
Example #17
Source File: preprocessor_test.py From Elphas with Apache License 2.0 | 5 votes |
def testRandomCropImageWithCache(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {'probability': 0.5}), (preprocessor.normalize_image, { 'original_minval': 0, 'original_maxval': 255, 'target_minval': 0, 'target_maxval': 1, }), (preprocessor.random_crop_image, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=False, test_keypoints=False)
Example #18
Source File: preprocessor_test.py From Elphas with Apache License 2.0 | 5 votes |
def testRandomRGBtoGrayWithCache(self): preprocess_options = [( preprocessor.random_rgb_to_gray, {'probability': 0.5})] self._testPreprocessorCache(preprocess_options, test_boxes=False, test_masks=False, test_keypoints=False)
Example #19
Source File: preprocessor_test.py From Elphas with Apache License 2.0 | 5 votes |
def testRandomRGBtoGray(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_gray = tensor_dict[fields.InputDataFields.image] images_gray_r, images_gray_g, images_gray_b = tf.split( value=images_gray, num_or_size_splits=3, axis=3) images_r, images_g, images_b = tf.split( value=images_original, num_or_size_splits=3, axis=3) images_r_diff1 = tf.squared_difference(tf.to_float(images_r), tf.to_float(images_gray_r)) images_r_diff2 = tf.squared_difference(tf.to_float(images_gray_r), tf.to_float(images_gray_g)) images_r_diff = tf.multiply(images_r_diff1, images_r_diff2) images_g_diff1 = tf.squared_difference(tf.to_float(images_g), tf.to_float(images_gray_g)) images_g_diff2 = tf.squared_difference(tf.to_float(images_gray_g), tf.to_float(images_gray_b)) images_g_diff = tf.multiply(images_g_diff1, images_g_diff2) images_b_diff1 = tf.squared_difference(tf.to_float(images_b), tf.to_float(images_gray_b)) images_b_diff2 = tf.squared_difference(tf.to_float(images_gray_b), tf.to_float(images_gray_r)) images_b_diff = tf.multiply(images_b_diff1, images_b_diff2) image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1]) with self.test_session() as sess: (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = sess.run( [images_r_diff, images_g_diff, images_b_diff, image_zero1]) self.assertAllClose(images_r_diff_, image_zero1_) self.assertAllClose(images_g_diff_, image_zero1_) self.assertAllClose(images_b_diff_, image_zero1_)
Example #20
Source File: preprocessor_builder_test.py From MBMD with MIT License | 5 votes |
def test_build_random_rgb_to_gray(self): preprocessor_text_proto = """ random_rgb_to_gray { probability: 0.8 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_rgb_to_gray) self.assert_dictionary_close(args, {'probability': 0.8})
Example #21
Source File: preprocessor_test.py From MBMD with MIT License | 5 votes |
def testRandomRGBtoGray(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_gray = tensor_dict[fields.InputDataFields.image] images_gray_r, images_gray_g, images_gray_b = tf.split( value=images_gray, num_or_size_splits=3, axis=3) images_r, images_g, images_b = tf.split( value=images_original, num_or_size_splits=3, axis=3) images_r_diff1 = tf.squared_difference(tf.to_float(images_r), tf.to_float(images_gray_r)) images_r_diff2 = tf.squared_difference(tf.to_float(images_gray_r), tf.to_float(images_gray_g)) images_r_diff = tf.multiply(images_r_diff1, images_r_diff2) images_g_diff1 = tf.squared_difference(tf.to_float(images_g), tf.to_float(images_gray_g)) images_g_diff2 = tf.squared_difference(tf.to_float(images_gray_g), tf.to_float(images_gray_b)) images_g_diff = tf.multiply(images_g_diff1, images_g_diff2) images_b_diff1 = tf.squared_difference(tf.to_float(images_b), tf.to_float(images_gray_b)) images_b_diff2 = tf.squared_difference(tf.to_float(images_gray_b), tf.to_float(images_gray_r)) images_b_diff = tf.multiply(images_b_diff1, images_b_diff2) image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1]) with self.test_session() as sess: (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = sess.run( [images_r_diff, images_g_diff, images_b_diff, image_zero1]) self.assertAllClose(images_r_diff_, image_zero1_) self.assertAllClose(images_g_diff_, image_zero1_) self.assertAllClose(images_b_diff_, image_zero1_)
Example #22
Source File: preprocessor_builder_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def test_build_random_rgb_to_gray(self): preprocessor_text_proto = """ random_rgb_to_gray { probability: 0.8 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_rgb_to_gray) self.assert_dictionary_close(args, {'probability': 0.8})
Example #23
Source File: preprocessor_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def testRandomRGBtoGray(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_gray = tensor_dict[fields.InputDataFields.image] images_gray_r, images_gray_g, images_gray_b = tf.split( value=images_gray, num_or_size_splits=3, axis=3) images_r, images_g, images_b = tf.split( value=images_original, num_or_size_splits=3, axis=3) images_r_diff1 = tf.squared_difference(tf.to_float(images_r), tf.to_float(images_gray_r)) images_r_diff2 = tf.squared_difference(tf.to_float(images_gray_r), tf.to_float(images_gray_g)) images_r_diff = tf.multiply(images_r_diff1, images_r_diff2) images_g_diff1 = tf.squared_difference(tf.to_float(images_g), tf.to_float(images_gray_g)) images_g_diff2 = tf.squared_difference(tf.to_float(images_gray_g), tf.to_float(images_gray_b)) images_g_diff = tf.multiply(images_g_diff1, images_g_diff2) images_b_diff1 = tf.squared_difference(tf.to_float(images_b), tf.to_float(images_gray_b)) images_b_diff2 = tf.squared_difference(tf.to_float(images_gray_b), tf.to_float(images_gray_r)) images_b_diff = tf.multiply(images_b_diff1, images_b_diff2) image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1]) with self.test_session() as sess: (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = sess.run( [images_r_diff, images_g_diff, images_b_diff, image_zero1]) self.assertAllClose(images_r_diff_, image_zero1_) self.assertAllClose(images_g_diff_, image_zero1_) self.assertAllClose(images_b_diff_, image_zero1_)
Example #24
Source File: preprocessor_builder_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_build_random_rgb_to_gray(self): preprocessor_text_proto = """ random_rgb_to_gray { probability: 0.8 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_rgb_to_gray) self.assert_dictionary_close(args, {'probability': 0.8})
Example #25
Source File: preprocessor_builder_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def test_build_random_rgb_to_gray(self): preprocessor_text_proto = """ random_rgb_to_gray { probability: 0.8 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_rgb_to_gray) self.assert_dictionary_close(args, {'probability': 0.8})
Example #26
Source File: preprocessor_builder_test.py From hands-detection with MIT License | 5 votes |
def test_build_random_rgb_to_gray(self): preprocessor_text_proto = """ random_rgb_to_gray { probability: 0.8 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_rgb_to_gray) self.assert_dictionary_close(args, {'probability': 0.8})
Example #27
Source File: preprocessor_test.py From hands-detection with MIT License | 5 votes |
def testRandomRGBtoGray(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_gray = tensor_dict[fields.InputDataFields.image] images_gray_r, images_gray_g, images_gray_b = tf.split( value=images_gray, num_or_size_splits=3, axis=3) images_r, images_g, images_b = tf.split( value=images_original, num_or_size_splits=3, axis=3) images_r_diff1 = tf.squared_difference(tf.to_float(images_r), tf.to_float(images_gray_r)) images_r_diff2 = tf.squared_difference(tf.to_float(images_gray_r), tf.to_float(images_gray_g)) images_r_diff = tf.multiply(images_r_diff1, images_r_diff2) images_g_diff1 = tf.squared_difference(tf.to_float(images_g), tf.to_float(images_gray_g)) images_g_diff2 = tf.squared_difference(tf.to_float(images_gray_g), tf.to_float(images_gray_b)) images_g_diff = tf.multiply(images_g_diff1, images_g_diff2) images_b_diff1 = tf.squared_difference(tf.to_float(images_b), tf.to_float(images_gray_b)) images_b_diff2 = tf.squared_difference(tf.to_float(images_gray_b), tf.to_float(images_gray_r)) images_b_diff = tf.multiply(images_b_diff1, images_b_diff2) image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1]) with self.test_session() as sess: (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = sess.run( [images_r_diff, images_g_diff, images_b_diff, image_zero1]) self.assertAllClose(images_r_diff_, image_zero1_) self.assertAllClose(images_g_diff_, image_zero1_) self.assertAllClose(images_b_diff_, image_zero1_)
Example #28
Source File: preprocessor_builder_test.py From moveo_ros with MIT License | 5 votes |
def test_build_random_rgb_to_gray(self): preprocessor_text_proto = """ random_rgb_to_gray { probability: 0.8 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_rgb_to_gray) self.assert_dictionary_close(args, {'probability': 0.8})
Example #29
Source File: preprocessor_test.py From moveo_ros with MIT License | 5 votes |
def testRandomRGBtoGray(self): preprocess_options = [(preprocessor.random_rgb_to_gray, {})] images_original = self.createTestImages() tensor_dict = {fields.InputDataFields.image: images_original} tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options) images_gray = tensor_dict[fields.InputDataFields.image] images_gray_r, images_gray_g, images_gray_b = tf.split( value=images_gray, num_or_size_splits=3, axis=3) images_r, images_g, images_b = tf.split( value=images_original, num_or_size_splits=3, axis=3) images_r_diff1 = tf.squared_difference(tf.to_float(images_r), tf.to_float(images_gray_r)) images_r_diff2 = tf.squared_difference(tf.to_float(images_gray_r), tf.to_float(images_gray_g)) images_r_diff = tf.multiply(images_r_diff1, images_r_diff2) images_g_diff1 = tf.squared_difference(tf.to_float(images_g), tf.to_float(images_gray_g)) images_g_diff2 = tf.squared_difference(tf.to_float(images_gray_g), tf.to_float(images_gray_b)) images_g_diff = tf.multiply(images_g_diff1, images_g_diff2) images_b_diff1 = tf.squared_difference(tf.to_float(images_b), tf.to_float(images_gray_b)) images_b_diff2 = tf.squared_difference(tf.to_float(images_gray_b), tf.to_float(images_gray_r)) images_b_diff = tf.multiply(images_b_diff1, images_b_diff2) image_zero1 = tf.constant(0, dtype=tf.float32, shape=[1, 4, 4, 1]) with self.test_session() as sess: (images_r_diff_, images_g_diff_, images_b_diff_, image_zero1_) = sess.run( [images_r_diff, images_g_diff, images_b_diff, image_zero1]) self.assertAllClose(images_r_diff_, image_zero1_) self.assertAllClose(images_g_diff_, image_zero1_) self.assertAllClose(images_b_diff_, image_zero1_)
Example #30
Source File: preprocessor_builder_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def test_build_random_rgb_to_gray(self): preprocessor_text_proto = """ random_rgb_to_gray { probability: 0.8 } """ preprocessor_proto = preprocessor_pb2.PreprocessingStep() text_format.Merge(preprocessor_text_proto, preprocessor_proto) function, args = preprocessor_builder.build(preprocessor_proto) self.assertEqual(function, preprocessor.random_rgb_to_gray) self.assert_dictionary_close(args, {'probability': 0.8})