Python object_detection.core.preprocessor.random_pad_to_aspect_ratio() Examples
The following are 30
code examples of object_detection.core.preprocessor.random_pad_to_aspect_ratio().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.core.preprocessor
, or try the search function
.
Example #1
Source File: preprocessor_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testRunRandomPadToAspectRatioWithMasks(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_masks ]) expected_boxes = np.array( [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllEqual(distorted_masks_.shape, [2, 400, 400])
Example #2
Source File: preprocessor_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testRunRandomPadToAspectRatioWithMasks(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_masks ]) expected_boxes = np.array( [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllEqual(distorted_masks_.shape, [2, 400, 400])
Example #3
Source File: preprocessor_test.py From Accident-Detection-on-Indian-Roads with GNU Affero General Public License v3.0 | 5 votes |
def testRandomPadToAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } tensor_dict = preprocessor.preprocess(tensor_dict, []) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, { 'aspect_ratio': 2.0 })] padded_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) padded_images = padded_tensor_dict[fields.InputDataFields.image] padded_boxes = padded_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_shape = tf.shape(boxes) padded_boxes_shape = tf.shape(padded_boxes) images_shape = tf.shape(images) padded_images_shape = tf.shape(padded_images) with self.test_session() as sess: (boxes_shape_, padded_boxes_shape_, images_shape_, padded_images_shape_) = sess.run([ boxes_shape, padded_boxes_shape, images_shape, padded_images_shape ]) self.assertAllEqual(boxes_shape_, padded_boxes_shape_) self.assertEqual(images_shape_[1], padded_images_shape_[1]) self.assertEqual(2 * images_shape_[2], padded_images_shape_[2])
Example #4
Source File: preprocessor_test.py From Accident-Detection-on-Indian-Roads with GNU Affero General Public License v3.0 | 5 votes |
def testRunRandomPadToAspectRatioWithMasks(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_masks ]) expected_boxes = np.array( [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllEqual(distorted_masks_.shape, [2, 400, 400])
Example #5
Source File: preprocessor_test.py From Accident-Detection-on-Indian-Roads with GNU Affero General Public License v3.0 | 5 votes |
def testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } preprocessor_arg_map = preprocessor.get_default_func_arg_map() preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {'min_padded_size_ratio': (4.0, 4.0), 'max_padded_size_ratio': (4.0, 4.0)})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] with self.test_session() as sess: distorted_image_, distorted_boxes_, distorted_labels_ = sess.run([ distorted_image, distorted_boxes, distorted_labels]) expected_boxes = np.array( [[0.0, 0.125, 0.1875, 0.5], [0.0625, 0.25, 0.1875, 0.5]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 800, 800, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten())
Example #6
Source File: preprocessor_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testRandomPadToAspectRatioWithCache(self): preprocess_options = [(preprocessor.random_pad_to_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True)
Example #7
Source File: preprocessor_test.py From models with Apache License 2.0 | 5 votes |
def testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios(self): def graph_fn(): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } preprocessor_arg_map = preprocessor.get_default_func_arg_map() preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {'min_padded_size_ratio': (4.0, 4.0), 'max_padded_size_ratio': (4.0, 4.0)})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] return [distorted_image, distorted_boxes, distorted_labels] distorted_image_, distorted_boxes_, distorted_labels_ = self.execute_cpu( graph_fn, []) expected_boxes = np.array( [[0.0, 0.125, 0.1875, 0.5], [0.0625, 0.25, 0.1875, 0.5]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 800, 800, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten())
Example #8
Source File: preprocessor_test.py From models with Apache License 2.0 | 5 votes |
def testRunRandomPadToAspectRatioWithMasks(self): def graph_fn(): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] return [ distorted_image, distorted_boxes, distorted_labels, distorted_masks ] (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = self.execute_cpu(graph_fn, []) expected_boxes = np.array( [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllEqual(distorted_masks_.shape, [2, 400, 400])
Example #9
Source File: preprocessor_test.py From models with Apache License 2.0 | 5 votes |
def testRandomPadToAspectRatio(self): def graph_fn(): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } tensor_dict = preprocessor.preprocess(tensor_dict, []) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, { 'aspect_ratio': 2.0 })] padded_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) padded_images = padded_tensor_dict[fields.InputDataFields.image] padded_boxes = padded_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_shape = tf.shape(boxes) padded_boxes_shape = tf.shape(padded_boxes) images_shape = tf.shape(images) padded_images_shape = tf.shape(padded_images) return [ boxes_shape, padded_boxes_shape, images_shape, padded_images_shape ] (boxes_shape_, padded_boxes_shape_, images_shape_, padded_images_shape_) = self.execute_cpu(graph_fn, []) self.assertAllEqual(boxes_shape_, padded_boxes_shape_) self.assertEqual(images_shape_[1], padded_images_shape_[1]) self.assertEqual(2 * images_shape_[2], padded_images_shape_[2])
Example #10
Source File: preprocessor_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def testRandomPadToAspectRatioWithCache(self): preprocess_options = [(preprocessor.random_pad_to_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True)
Example #11
Source File: preprocessor_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } preprocessor_arg_map = preprocessor.get_default_func_arg_map() preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {'min_padded_size_ratio': (4.0, 4.0), 'max_padded_size_ratio': (4.0, 4.0)})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] with self.test_session() as sess: distorted_image_, distorted_boxes_, distorted_labels_ = sess.run([ distorted_image, distorted_boxes, distorted_labels]) expected_boxes = np.array( [[0.0, 0.125, 0.1875, 0.5], [0.0625, 0.25, 0.1875, 0.5]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 800, 800, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten())
Example #12
Source File: preprocessor_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def testRunRandomPadToAspectRatioWithMasks(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_masks ]) expected_boxes = np.array( [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllEqual(distorted_masks_.shape, [2, 400, 400])
Example #13
Source File: preprocessor_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def testRandomPadToAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } tensor_dict = preprocessor.preprocess(tensor_dict, []) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, { 'aspect_ratio': 2.0 })] padded_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) padded_images = padded_tensor_dict[fields.InputDataFields.image] padded_boxes = padded_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_shape = tf.shape(boxes) padded_boxes_shape = tf.shape(padded_boxes) images_shape = tf.shape(images) padded_images_shape = tf.shape(padded_images) with self.test_session() as sess: (boxes_shape_, padded_boxes_shape_, images_shape_, padded_images_shape_) = sess.run([ boxes_shape, padded_boxes_shape, images_shape, padded_images_shape ]) self.assertAllEqual(boxes_shape_, padded_boxes_shape_) self.assertEqual(images_shape_[1], padded_images_shape_[1]) self.assertEqual(2 * images_shape_[2], padded_images_shape_[2])
Example #14
Source File: preprocessor_test.py From models with Apache License 2.0 | 5 votes |
def testRandomPadToAspectRatioWithCache(self): preprocess_options = [(preprocessor.random_pad_to_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True)
Example #15
Source File: preprocessor_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testRandomPadToAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } tensor_dict = preprocessor.preprocess(tensor_dict, []) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, { 'aspect_ratio': 2.0 })] padded_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) padded_images = padded_tensor_dict[fields.InputDataFields.image] padded_boxes = padded_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_shape = tf.shape(boxes) padded_boxes_shape = tf.shape(padded_boxes) images_shape = tf.shape(images) padded_images_shape = tf.shape(padded_images) with self.test_session() as sess: (boxes_shape_, padded_boxes_shape_, images_shape_, padded_images_shape_) = sess.run([ boxes_shape, padded_boxes_shape, images_shape, padded_images_shape ]) self.assertAllEqual(boxes_shape_, padded_boxes_shape_) self.assertEqual(images_shape_[1], padded_images_shape_[1]) self.assertEqual(2 * images_shape_[2], padded_images_shape_[2])
Example #16
Source File: preprocessor_test.py From Accident-Detection-on-Indian-Roads with GNU Affero General Public License v3.0 | 5 votes |
def testRandomPadToAspectRatioWithCache(self): preprocess_options = [(preprocessor.random_pad_to_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True)
Example #17
Source File: preprocessor_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } preprocessor_arg_map = preprocessor.get_default_func_arg_map() preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {'min_padded_size_ratio': (4.0, 4.0), 'max_padded_size_ratio': (4.0, 4.0)})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] with self.test_session() as sess: distorted_image_, distorted_boxes_, distorted_labels_ = sess.run([ distorted_image, distorted_boxes, distorted_labels]) expected_boxes = np.array( [[0.0, 0.125, 0.1875, 0.5], [0.0625, 0.25, 0.1875, 0.5]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 800, 800, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten())
Example #18
Source File: preprocessor_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testRandomPadToAspectRatioWithCache(self): preprocess_options = [(preprocessor.random_pad_to_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True)
Example #19
Source File: preprocessor_test.py From AniSeg with Apache License 2.0 | 5 votes |
def testRandomPadToAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } tensor_dict = preprocessor.preprocess(tensor_dict, []) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, { 'aspect_ratio': 2.0 })] padded_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) padded_images = padded_tensor_dict[fields.InputDataFields.image] padded_boxes = padded_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_shape = tf.shape(boxes) padded_boxes_shape = tf.shape(padded_boxes) images_shape = tf.shape(images) padded_images_shape = tf.shape(padded_images) with self.test_session() as sess: (boxes_shape_, padded_boxes_shape_, images_shape_, padded_images_shape_) = sess.run([ boxes_shape, padded_boxes_shape, images_shape, padded_images_shape ]) self.assertAllEqual(boxes_shape_, padded_boxes_shape_) self.assertEqual(images_shape_[1], padded_images_shape_[1]) self.assertEqual(2 * images_shape_[2], padded_images_shape_[2])
Example #20
Source File: preprocessor_test.py From AniSeg with Apache License 2.0 | 5 votes |
def testRunRandomPadToAspectRatioWithMasks(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_masks ]) expected_boxes = np.array( [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllEqual(distorted_masks_.shape, [2, 400, 400])
Example #21
Source File: preprocessor_test.py From AniSeg with Apache License 2.0 | 5 votes |
def testRandomPadToAspectRatioWithCache(self): preprocess_options = [(preprocessor.random_pad_to_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True)
Example #22
Source File: preprocessor_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testRunRandomPadToAspectRatioWithMasks(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_masks ]) expected_boxes = np.array( [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllEqual(distorted_masks_.shape, [2, 400, 400])
Example #23
Source File: preprocessor_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testRandomPadToAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } tensor_dict = preprocessor.preprocess(tensor_dict, []) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, { 'aspect_ratio': 2.0 })] padded_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) padded_images = padded_tensor_dict[fields.InputDataFields.image] padded_boxes = padded_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_shape = tf.shape(boxes) padded_boxes_shape = tf.shape(padded_boxes) images_shape = tf.shape(images) padded_images_shape = tf.shape(padded_images) with self.test_session() as sess: (boxes_shape_, padded_boxes_shape_, images_shape_, padded_images_shape_) = sess.run([ boxes_shape, padded_boxes_shape, images_shape, padded_images_shape ]) self.assertAllEqual(boxes_shape_, padded_boxes_shape_) self.assertEqual(images_shape_[1], padded_images_shape_[1]) self.assertEqual(2 * images_shape_[2], padded_images_shape_[2])
Example #24
Source File: preprocessor_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def testRunRandomPadToAspectRatioWithMasks(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_masks ]) expected_boxes = np.array( [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllEqual(distorted_masks_.shape, [2, 400, 400])
Example #25
Source File: preprocessor_test.py From Elphas with Apache License 2.0 | 5 votes |
def testRandomPadToAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } tensor_dict = preprocessor.preprocess(tensor_dict, []) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, { 'aspect_ratio': 2.0 })] padded_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) padded_images = padded_tensor_dict[fields.InputDataFields.image] padded_boxes = padded_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_shape = tf.shape(boxes) padded_boxes_shape = tf.shape(padded_boxes) images_shape = tf.shape(images) padded_images_shape = tf.shape(padded_images) with self.test_session() as sess: (boxes_shape_, padded_boxes_shape_, images_shape_, padded_images_shape_) = sess.run([ boxes_shape, padded_boxes_shape, images_shape, padded_images_shape ]) self.assertAllEqual(boxes_shape_, padded_boxes_shape_) self.assertEqual(images_shape_[1], padded_images_shape_[1]) self.assertEqual(2 * images_shape_[2], padded_images_shape_[2])
Example #26
Source File: preprocessor_test.py From Elphas with Apache License 2.0 | 5 votes |
def testRunRandomPadToAspectRatioWithMasks(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_masks ]) expected_boxes = np.array( [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllEqual(distorted_masks_.shape, [2, 400, 400])
Example #27
Source File: preprocessor_test.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def testRandomPadToAspectRatioWithCache(self): preprocess_options = [(preprocessor.random_pad_to_aspect_ratio, {})] self._testPreprocessorCache(preprocess_options, test_boxes=True, test_masks=True, test_keypoints=True)
Example #28
Source File: preprocessor_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testRandomPadToAspectRatio(self): images = self.createTestImages() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: images, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, } tensor_dict = preprocessor.preprocess(tensor_dict, []) images = tensor_dict[fields.InputDataFields.image] preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, { 'aspect_ratio': 2.0 })] padded_tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options) padded_images = padded_tensor_dict[fields.InputDataFields.image] padded_boxes = padded_tensor_dict[ fields.InputDataFields.groundtruth_boxes] boxes_shape = tf.shape(boxes) padded_boxes_shape = tf.shape(padded_boxes) images_shape = tf.shape(images) padded_images_shape = tf.shape(padded_images) with self.test_session() as sess: (boxes_shape_, padded_boxes_shape_, images_shape_, padded_images_shape_) = sess.run([ boxes_shape, padded_boxes_shape, images_shape, padded_images_shape ]) self.assertAllEqual(boxes_shape_, padded_boxes_shape_) self.assertEqual(images_shape_[1], padded_images_shape_[1]) self.assertEqual(2 * images_shape_[2], padded_images_shape_[2])
Example #29
Source File: preprocessor_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testRunRandomPadToAspectRatioWithMasks(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() masks = tf.random_uniform([2, 200, 400], dtype=tf.float32) tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels, fields.InputDataFields.groundtruth_instance_masks: masks } preprocessor_arg_map = preprocessor.get_default_func_arg_map( include_instance_masks=True) preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] distorted_masks = distorted_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] with self.test_session() as sess: (distorted_image_, distorted_boxes_, distorted_labels_, distorted_masks_) = sess.run([ distorted_image, distorted_boxes, distorted_labels, distorted_masks ]) expected_boxes = np.array( [[0.0, 0.25, 0.375, 1.0], [0.125, 0.5, 0.375, 1.0]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 400, 400, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten()) self.assertAllEqual(distorted_masks_.shape, [2, 400, 400])
Example #30
Source File: preprocessor_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testRunRandomPadToAspectRatioWithMinMaxPaddedSizeRatios(self): image = self.createColorfulTestImage() boxes = self.createTestBoxes() labels = self.createTestLabels() tensor_dict = { fields.InputDataFields.image: image, fields.InputDataFields.groundtruth_boxes: boxes, fields.InputDataFields.groundtruth_classes: labels } preprocessor_arg_map = preprocessor.get_default_func_arg_map() preprocessing_options = [(preprocessor.random_pad_to_aspect_ratio, {'min_padded_size_ratio': (4.0, 4.0), 'max_padded_size_ratio': (4.0, 4.0)})] distorted_tensor_dict = preprocessor.preprocess( tensor_dict, preprocessing_options, func_arg_map=preprocessor_arg_map) distorted_image = distorted_tensor_dict[fields.InputDataFields.image] distorted_boxes = distorted_tensor_dict[ fields.InputDataFields.groundtruth_boxes] distorted_labels = distorted_tensor_dict[ fields.InputDataFields.groundtruth_classes] with self.test_session() as sess: distorted_image_, distorted_boxes_, distorted_labels_ = sess.run([ distorted_image, distorted_boxes, distorted_labels]) expected_boxes = np.array( [[0.0, 0.125, 0.1875, 0.5], [0.0625, 0.25, 0.1875, 0.5]], dtype=np.float32) self.assertAllEqual(distorted_image_.shape, [1, 800, 800, 3]) self.assertAllEqual(distorted_labels_, [1, 2]) self.assertAllClose(distorted_boxes_.flatten(), expected_boxes.flatten())