Python object_detection.core.preprocessor.normalize_image() Examples

The following are 30 code examples of object_detection.core.preprocessor.normalize_image(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module object_detection.core.preprocessor , or try the search function .
Example #1
Source File: preprocessor_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def testRandomResizeMethod(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_resize_method, {
        'target_size': (75, 150)
    }))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    resized_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                  preprocessing_options)
    resized_images = resized_tensor_dict[fields.InputDataFields.image]
    resized_images_shape = tf.shape(resized_images)
    expected_images_shape = tf.constant([1, 75, 150, 3], dtype=tf.int32)

    with self.test_session() as sess:
      (expected_images_shape_, resized_images_shape_) = sess.run(
          [expected_images_shape, resized_images_shape])
      self.assertAllEqual(expected_images_shape_,
                          resized_images_shape_) 
Example #2
Source File: preprocessor_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def testRandomAdjustHue(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_hue, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_hue = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_hue_shape = tf.shape(images_hue)
    with self.test_session() as sess:
      (image_original_shape_, image_hue_shape_) = sess.run(
          [image_original_shape, image_hue_shape])
      self.assertAllEqual(image_original_shape_, image_hue_shape_) 
Example #3
Source File: preprocessor_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def testRandomAdjustBrightness(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_brightness, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_bright = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_bright_shape = tf.shape(images_bright)
    with self.test_session() as sess:
      (image_original_shape_, image_bright_shape_) = sess.run(
          [image_original_shape, image_bright_shape])
      self.assertAllEqual(image_original_shape_, image_bright_shape_) 
Example #4
Source File: preprocessor_test.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def testRandomResizeMethod(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_resize_method, {
        'target_size': (75, 150)
    }))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    resized_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                  preprocessing_options)
    resized_images = resized_tensor_dict[fields.InputDataFields.image]
    resized_images_shape = tf.shape(resized_images)
    expected_images_shape = tf.constant([1, 75, 150, 3], dtype=tf.int32)

    with self.test_session() as sess:
      (expected_images_shape_, resized_images_shape_) = sess.run(
          [expected_images_shape, resized_images_shape])
      self.assertAllEqual(expected_images_shape_,
                          resized_images_shape_) 
Example #5
Source File: preprocessor_test.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def testNormalizeImage(self):
    preprocess_options = [(preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 256,
        'target_minval': -1,
        'target_maxval': 1
    })]
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    images_expected = self.expectedImagesAfterNormalization()

    with self.test_session() as sess:
      (images_, images_expected_) = sess.run(
          [images, images_expected])
      images_shape_ = images_.shape
      images_expected_shape_ = images_expected_.shape
      expected_shape = [1, 4, 4, 3]
      self.assertAllEqual(images_expected_shape_, images_shape_)
      self.assertAllEqual(images_shape_, expected_shape)
      self.assertAllClose(images_, images_expected_) 
Example #6
Source File: preprocessor_test.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def testRandomBlackPatches(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_black_patches, {
        'size_to_image_ratio': 0.5
    }))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    blacked_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                  preprocessing_options)
    blacked_images = blacked_tensor_dict[fields.InputDataFields.image]
    images_shape = tf.shape(images)
    blacked_images_shape = tf.shape(blacked_images)

    with self.test_session() as sess:
      (images_shape_, blacked_images_shape_) = sess.run(
          [images_shape, blacked_images_shape])
      self.assertAllEqual(images_shape_, blacked_images_shape_) 
Example #7
Source File: preprocessor_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def testRandomDistortColor(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_distort_color, {}))
    images_original = self.createTestImages()
    images_original_shape = tf.shape(images_original)
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_distorted_color = tensor_dict[fields.InputDataFields.image]
    images_distorted_color_shape = tf.shape(images_distorted_color)
    with self.test_session() as sess:
      (images_original_shape_, images_distorted_color_shape_) = sess.run(
          [images_original_shape, images_distorted_color_shape])
      self.assertAllEqual(images_original_shape_, images_distorted_color_shape_) 
Example #8
Source File: preprocessor_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def testRandomAdjustHue(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_hue, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_hue = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_hue_shape = tf.shape(images_hue)
    with self.test_session() as sess:
      (image_original_shape_, image_hue_shape_) = sess.run(
          [image_original_shape, image_hue_shape])
      self.assertAllEqual(image_original_shape_, image_hue_shape_) 
Example #9
Source File: preprocessor_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def testRandomDistortColor(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_distort_color, {}))
    images_original = self.createTestImages()
    images_original_shape = tf.shape(images_original)
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_distorted_color = tensor_dict[fields.InputDataFields.image]
    images_distorted_color_shape = tf.shape(images_distorted_color)
    with self.test_session() as sess:
      (images_original_shape_, images_distorted_color_shape_) = sess.run(
          [images_original_shape, images_distorted_color_shape])
      self.assertAllEqual(images_original_shape_, images_distorted_color_shape_) 
Example #10
Source File: preprocessor_test.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def testRandomAdjustHue(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_hue, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_hue = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_hue_shape = tf.shape(images_hue)
    with self.test_session() as sess:
      (image_original_shape_, image_hue_shape_) = sess.run(
          [image_original_shape, image_hue_shape])
      self.assertAllEqual(image_original_shape_, image_hue_shape_) 
Example #11
Source File: preprocessor_test.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def testRandomAdjustContrast(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_contrast, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_contrast = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_contrast_shape = tf.shape(images_contrast)
    with self.test_session() as sess:
      (image_original_shape_, image_contrast_shape_) = sess.run(
          [image_original_shape, image_contrast_shape])
      self.assertAllEqual(image_original_shape_, image_contrast_shape_) 
Example #12
Source File: preprocessor_test.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def testRandomAdjustBrightness(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_brightness, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_bright = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_bright_shape = tf.shape(images_bright)
    with self.test_session() as sess:
      (image_original_shape_, image_bright_shape_) = sess.run(
          [image_original_shape, image_bright_shape])
      self.assertAllEqual(image_original_shape_, image_bright_shape_) 
Example #13
Source File: preprocessor_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def testRandomAdjustBrightness(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_brightness, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_bright = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_bright_shape = tf.shape(images_bright)
    with self.test_session() as sess:
      (image_original_shape_, image_bright_shape_) = sess.run(
          [image_original_shape, image_bright_shape])
      self.assertAllEqual(image_original_shape_, image_bright_shape_) 
Example #14
Source File: preprocessor_builder_test.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def test_build_normalize_image(self):
    preprocessor_text_proto = """
    normalize_image {
      original_minval: 0.0
      original_maxval: 255.0
      target_minval: -1.0
      target_maxval: 1.0
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.normalize_image)
    self.assertEqual(args, {
        'original_minval': 0.0,
        'original_maxval': 255.0,
        'target_minval': -1.0,
        'target_maxval': 1.0,
    }) 
Example #15
Source File: preprocessor_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def testNormalizeImage(self):
    preprocess_options = [(preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 256,
        'target_minval': -1,
        'target_maxval': 1
    })]
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    images_expected = self.expectedImagesAfterNormalization()

    with self.test_session() as sess:
      (images_, images_expected_) = sess.run(
          [images, images_expected])
      images_shape_ = images_.shape
      images_expected_shape_ = images_expected_.shape
      expected_shape = [1, 4, 4, 3]
      self.assertAllEqual(images_expected_shape_, images_shape_)
      self.assertAllEqual(images_shape_, expected_shape)
      self.assertAllClose(images_, images_expected_) 
Example #16
Source File: preprocessor_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def testRandomPixelValueScale(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_pixel_value_scale, {}))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_min = tf.to_float(images) * 0.9 / 255.0
    images_max = tf.to_float(images) * 1.1 / 255.0
    images = tensor_dict[fields.InputDataFields.image]
    values_greater = tf.greater_equal(images, images_min)
    values_less = tf.less_equal(images, images_max)
    values_true = tf.fill([1, 4, 4, 3], True)
    with self.test_session() as sess:
      (values_greater_, values_less_, values_true_) = sess.run(
          [values_greater, values_less, values_true])
      self.assertAllClose(values_greater_, values_true_)
      self.assertAllClose(values_less_, values_true_) 
Example #17
Source File: preprocessor_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def testRandomAdjustBrightness(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_brightness, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_bright = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_bright_shape = tf.shape(images_bright)
    with self.test_session() as sess:
      (image_original_shape_, image_bright_shape_) = sess.run(
          [image_original_shape, image_bright_shape])
      self.assertAllEqual(image_original_shape_, image_bright_shape_) 
Example #18
Source File: preprocessor_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def testRandomAdjustContrast(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_contrast, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_contrast = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_contrast_shape = tf.shape(images_contrast)
    with self.test_session() as sess:
      (image_original_shape_, image_contrast_shape_) = sess.run(
          [image_original_shape, image_contrast_shape])
      self.assertAllEqual(image_original_shape_, image_contrast_shape_) 
Example #19
Source File: preprocessor_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def testRandomAdjustHue(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_adjust_hue, {}))
    images_original = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images_original}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_hue = tensor_dict[fields.InputDataFields.image]
    image_original_shape = tf.shape(images_original)
    image_hue_shape = tf.shape(images_hue)
    with self.test_session() as sess:
      (image_original_shape_, image_hue_shape_) = sess.run(
          [image_original_shape, image_hue_shape])
      self.assertAllEqual(image_original_shape_, image_hue_shape_) 
Example #20
Source File: preprocessor_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def testRandomPixelValueScale(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_pixel_value_scale, {}))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_min = tf.to_float(images) * 0.9 / 255.0
    images_max = tf.to_float(images) * 1.1 / 255.0
    images = tensor_dict[fields.InputDataFields.image]
    values_greater = tf.greater_equal(images, images_min)
    values_less = tf.less_equal(images, images_max)
    values_true = tf.fill([1, 4, 4, 3], True)
    with self.test_session() as sess:
      (values_greater_, values_less_, values_true_) = sess.run(
          [values_greater, values_less, values_true])
      self.assertAllClose(values_greater_, values_true_)
      self.assertAllClose(values_less_, values_true_) 
Example #21
Source File: preprocessor_test.py    From ros_people_object_detection_tensorflow with Apache License 2.0 6 votes vote down vote up
def testNormalizeImage(self):
    preprocess_options = [(preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 256,
        'target_minval': -1,
        'target_maxval': 1
    })]
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    images_expected = self.expectedImagesAfterNormalization()

    with self.test_session() as sess:
      (images_, images_expected_) = sess.run(
          [images, images_expected])
      images_shape_ = images_.shape
      images_expected_shape_ = images_expected_.shape
      expected_shape = [1, 4, 4, 3]
      self.assertAllEqual(images_expected_shape_, images_shape_)
      self.assertAllEqual(images_shape_, expected_shape)
      self.assertAllClose(images_, images_expected_) 
Example #22
Source File: preprocessor_builder_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def test_build_normalize_image(self):
    preprocessor_text_proto = """
    normalize_image {
      original_minval: 0.0
      original_maxval: 255.0
      target_minval: -1.0
      target_maxval: 1.0
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.normalize_image)
    self.assertEqual(args, {
        'original_minval': 0.0,
        'original_maxval': 255.0,
        'target_minval': -1.0,
        'target_maxval': 1.0,
    }) 
Example #23
Source File: preprocessor_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def testRandomPixelValueScale(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_pixel_value_scale, {}))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_min = tf.to_float(images) * 0.9 / 255.0
    images_max = tf.to_float(images) * 1.1 / 255.0
    images = tensor_dict[fields.InputDataFields.image]
    values_greater = tf.greater_equal(images, images_min)
    values_less = tf.less_equal(images, images_max)
    values_true = tf.fill([1, 4, 4, 3], True)
    with self.test_session() as sess:
      (values_greater_, values_less_, values_true_) = sess.run(
          [values_greater, values_less, values_true])
      self.assertAllClose(values_greater_, values_true_)
      self.assertAllClose(values_less_, values_true_) 
Example #24
Source File: preprocessor_test.py    From vehicle_counting_tensorflow with MIT License 6 votes vote down vote up
def testNormalizeImage(self):
    preprocess_options = [(preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 256,
        'target_minval': -1,
        'target_maxval': 1
    })]
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocess_options)
    images = tensor_dict[fields.InputDataFields.image]
    images_expected = self.expectedImagesAfterNormalization()

    with self.test_session() as sess:
      (images_, images_expected_) = sess.run(
          [images, images_expected])
      images_shape_ = images_.shape
      images_expected_shape_ = images_expected_.shape
      expected_shape = [1, 4, 4, 3]
      self.assertAllEqual(images_expected_shape_, images_shape_)
      self.assertAllEqual(images_shape_, expected_shape)
      self.assertAllClose(images_, images_expected_) 
Example #25
Source File: preprocessor_builder_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def test_build_normalize_image(self):
    preprocessor_text_proto = """
    normalize_image {
      original_minval: 0.0
      original_maxval: 255.0
      target_minval: -1.0
      target_maxval: 1.0
    }
    """
    preprocessor_proto = preprocessor_pb2.PreprocessingStep()
    text_format.Merge(preprocessor_text_proto, preprocessor_proto)
    function, args = preprocessor_builder.build(preprocessor_proto)
    self.assertEqual(function, preprocessor.normalize_image)
    self.assertEqual(args, {
        'original_minval': 0.0,
        'original_maxval': 255.0,
        'target_minval': -1.0,
        'target_maxval': 1.0,
    }) 
Example #26
Source File: preprocessor_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def testRandomBlackPatches(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_black_patches, {
        'size_to_image_ratio': 0.5
    }))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    blacked_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                  preprocessing_options)
    blacked_images = blacked_tensor_dict[fields.InputDataFields.image]
    images_shape = tf.shape(images)
    blacked_images_shape = tf.shape(blacked_images)

    with self.test_session() as sess:
      (images_shape_, blacked_images_shape_) = sess.run(
          [images_shape, blacked_images_shape])
      self.assertAllEqual(images_shape_, blacked_images_shape_) 
Example #27
Source File: preprocessor_test.py    From object_detector_app with MIT License 6 votes vote down vote up
def testRandomResizeMethod(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_resize_method, {
        'target_size': (75, 150)
    }))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    resized_tensor_dict = preprocessor.preprocess(tensor_dict,
                                                  preprocessing_options)
    resized_images = resized_tensor_dict[fields.InputDataFields.image]
    resized_images_shape = tf.shape(resized_images)
    expected_images_shape = tf.constant([1, 75, 150, 3], dtype=tf.int32)

    with self.test_session() as sess:
      (expected_images_shape_, resized_images_shape_) = sess.run(
          [expected_images_shape, resized_images_shape])
      self.assertAllEqual(expected_images_shape_,
                          resized_images_shape_) 
Example #28
Source File: preprocessor_test.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def testRandomPixelValueScale(self):
    preprocessing_options = []
    preprocessing_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocessing_options.append((preprocessor.random_pixel_value_scale, {}))
    images = self.createTestImages()
    tensor_dict = {fields.InputDataFields.image: images}
    tensor_dict = preprocessor.preprocess(tensor_dict, preprocessing_options)
    images_min = tf.to_float(images) * 0.9 / 255.0
    images_max = tf.to_float(images) * 1.1 / 255.0
    images = tensor_dict[fields.InputDataFields.image]
    values_greater = tf.greater_equal(images, images_min)
    values_less = tf.less_equal(images, images_max)
    values_true = tf.fill([1, 4, 4, 3], True)
    with self.test_session() as sess:
      (values_greater_, values_less_, values_true_) = sess.run(
          [values_greater, values_less, values_true])
      self.assertAllClose(values_greater_, values_true_)
      self.assertAllClose(values_less_, values_true_) 
Example #29
Source File: preprocessor_test.py    From vehicle_counting_tensorflow with MIT License 5 votes vote down vote up
def testRandomBlackPatchesWithCache(self):
    preprocess_options = []
    preprocess_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocess_options.append((preprocessor.random_black_patches, {
        'size_to_image_ratio': 0.5
    }))
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=True,
                                test_masks=True,
                                test_keypoints=True) 
Example #30
Source File: preprocessor_test.py    From vehicle_counting_tensorflow with MIT License 5 votes vote down vote up
def testRandomAdjustBrightnessWithCache(self):
    preprocess_options = []
    preprocess_options.append((preprocessor.normalize_image, {
        'original_minval': 0,
        'original_maxval': 255,
        'target_minval': 0,
        'target_maxval': 1
    }))
    preprocess_options.append((preprocessor.random_adjust_brightness, {}))
    self._testPreprocessorCache(preprocess_options,
                                test_boxes=False,
                                test_masks=False,
                                test_keypoints=False)