Python gdal.ReprojectImage() Examples

The following are 8 code examples of gdal.ReprojectImage(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module gdal , or try the search function .
Example #1
Source File: my_types.py    From pydem with Apache License 2.0 6 votes vote down vote up
def reproject_to_grid_coordinates(self, grid_coordinates, interp=gdalconst.GRA_NearestNeighbour):
        """ Reprojects data in this layer to match that in the GridCoordinates
        object. """
        source_dataset = self.grid_coordinates._as_gdal_dataset()
        dest_dataset = grid_coordinates._as_gdal_dataset()
        rb = source_dataset.GetRasterBand(1)
        rb.SetNoDataValue(NO_DATA_VALUE)
        rb.WriteArray(np.ma.filled(self.raster_data, NO_DATA_VALUE))

        gdal.ReprojectImage(source_dataset, dest_dataset,
                            source_dataset.GetProjection(),
                            dest_dataset.GetProjection(),
                            interp)
        dest_layer = self.clone_traits()
        dest_layer.grid_coordinates = grid_coordinates
        rb = dest_dataset.GetRasterBand(1)
        dest_layer.raster_data = np.ma.masked_values(rb.ReadAsArray(), NO_DATA_VALUE)
        return dest_layer 
Example #2
Source File: gdal2cesium.py    From gdal2cesium with GNU General Public License v2.0 6 votes vote down vote up
def scale_query_to_tile(self, dsquery, dstile):
        """Scales down query dataset to the tile dataset"""

        querysize = dsquery.RasterXSize
        tilesize = dstile.RasterXSize
        tilebands = dstile.RasterCount

        if self.options.resampling == 'average':
            for i in range(1,tilebands+1):
                res = gdal.RegenerateOverview( dsquery.GetRasterBand(i),
                    dstile.GetRasterBand(i), 'average' )
                if res != 0:
                    self.error("RegenerateOverview() failed")
        else:
            # Other algorithms are implemented by gdal.ReprojectImage().
            dsquery.SetGeoTransform( (0.0, tilesize / float(querysize), 0.0, 0.0, 0.0, tilesize / float(querysize)) )
            dstile.SetGeoTransform( (0.0, 1.0, 0.0, 0.0, 0.0, 1.0) )
            
            res = gdal.ReprojectImage(dsquery, dstile, None, None, self.resampling)    
            if res != 0:
                self.error("ReprojectImage() failed on %s, error %d" % (tilefilename, res)) 
Example #3
Source File: raster_manipulation.py    From pyeo with GNU General Public License v3.0 5 votes vote down vote up
def reproject_image(in_raster, out_raster_path, new_projection,  driver = "GTiff",  memory = 2e3, do_post_resample=True):
    """
    Creates a new, reprojected image from in_raster using the gdal.ReprojectImage function.

    Parameters
    ----------
    in_raster
        Either a gdal.Raster object or a path to a raster
    out_raster_path
        The path to the new output raster.
    new_projection
        The new projection in .wkt
    driver
        The format of the output raster.
    memory
        The amount of memory to give to the reprojection.
    do_post_resample
        If set to false, do not resample the image back to the original projection.

    Notes
    -----
    The GDAL reprojection routine changes the size of the pixels by a very small amount; for example, a 10m pixel image
    can become a 10.002m pixel resolution image. To stop alignment issues,
    by deafult this function resamples the images back to their original resolution

    """
    if type(new_projection) is int:
        proj = osr.SpatialReference()
        proj.ImportFromEPSG(new_projection)
        new_projection = proj.ExportToWkt()
    log = logging.getLogger(__name__)
    log.info("Reprojecting {} to {}".format(in_raster, new_projection))
    if type(in_raster) is str:
        in_raster = gdal.Open(in_raster)
    res = in_raster.GetGeoTransform()[1]
    gdal.Warp(out_raster_path, in_raster, dstSRS=new_projection, warpMemoryLimit=memory, format=driver)
    # After warping, image has irregular gt; resample back to previous pixel size
    # TODO: Make this an option
    if do_post_resample:
        resample_image_in_place(out_raster_path, res)
    return out_raster_path 
Example #4
Source File: create_eolabs_layers.py    From pyeo with GNU General Public License v3.0 5 votes vote down vote up
def create_display_layer(class_path, out_path, class_color_key):
    srs = """PROJCS["WGS 84 / Pseudo-Mercator",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Mercator_1SP"],PARAMETER["central_meridian",0],PARAMETER["scale_factor",1],PARAMETER["false_easting",0],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["X",EAST],AXIS["Y",NORTH],EXTENSION["PROJ4","+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs"],AUTHORITY["EPSG","3857"]]"""
    class_raster = gdal.Open(class_path)
    display_raster = pyeo.raster_manipulation.create_matching_dataset(class_raster, out_path, bands=3, datatype=gdal.GDT_Byte)
    display_array = display_raster.GetVirtualMemArray(eAccess=gdal.GF_Write)

    class_array = class_raster.GetVirtualMemArray()
    for index, class_pixel in np.ndenumerate(class_array):
        display_array[:, index[0], index[1]] =\
            [class_row[1:4] for class_row in class_color_key if class_row[0] == str(class_pixel)][0]
    display_array = None
    class_array = None
    gdal.ReprojectImage(display_raster, dst_wkt=srs)
    display_raster = None
    class_raster = None 
Example #5
Source File: modis_tg_halli.py    From hydrology with GNU General Public License v3.0 5 votes vote down vote up
def reproject_dataset(dataset, output_file_name, wkt_from="+proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs", epsg_to=32643, pixel_spacing=1000, file_format='GTiff'):
    '''
    :param dataset: Modis subset name use gdal.GetSubdatasets()
    :param output_file_name: file location along with proper extension
    :param wkt_from: Modis wkt (default)
    :param epsg_to: integer default(32643)
    :param pixel_spacing: in metres
    :param file_format: default GTiff
    :return:
    '''
    wgs84 = osr.SpatialReference()
    wgs84.ImportFromEPSG(epsg_to)
    modis = osr.SpatialReference()
    modis.ImportFromProj4(wkt_from)
    tx = osr.CoordinateTransformation(modis, wgs84)
    g = gdal.Open(dataset)
    geo_t = g.GetGeoTransform()
    print geo_t
    x_size = g.RasterXSize
    y_size = g.RasterYSize
    (ulx, uly, ulz) = tx.TransformPoint(geo_t[0], geo_t[3])
    (lrx, lry, lrz) = tx.TransformPoint(geo_t[0] + (geo_t[1]*x_size), geo_t[3]+ (geo_t[5]*y_size))
    mem_drv = gdal.GetDriverByName(file_format)
    dest = mem_drv.Create(output_file_name, int((lrx-ulx)/pixel_spacing), int((uly - lry)/pixel_spacing), 1, gdal.GDT_Float32)
    new_geo = ([ulx, pixel_spacing, geo_t[2], uly, geo_t[4], -pixel_spacing])
    dest.SetGeoTransform(new_geo)
    dest.SetProjection(wgs84.ExportToWkt())
    gdal.ReprojectImage(g, dest, modis.ExportToWkt(), wgs84.ExportToWkt(), gdal.GRA_Bilinear)
    print "reprojected" 
Example #6
Source File: functions.py    From hants with Apache License 2.0 4 votes vote down vote up
def Raster_to_Array(input_tiff, ll_corner, x_ncells, y_ncells,
                    values_type='float32'):
    """
    Loads a raster into a numpy array
    """
    # Input
    inp_lyr = gdal.Open(input_tiff)
    inp_srs = inp_lyr.GetProjection()
    inp_transform = inp_lyr.GetGeoTransform()
    inp_band = inp_lyr.GetRasterBand(1)
    inp_data_type = inp_band.DataType

    cellsize_x = inp_transform[1]
    rot_1 = inp_transform[2]
    rot_2 = inp_transform[4]
    cellsize_y = inp_transform[5]
    NoData_value = inp_band.GetNoDataValue()

    ll_x = ll_corner[0]
    ll_y = ll_corner[1]

    top_left_x = ll_x
    top_left_y = ll_y - cellsize_y*y_ncells

    # Change start point
    temp_path = tempfile.mkdtemp()
    temp_driver = gdal.GetDriverByName('GTiff')
    temp_tiff = os.path.join(temp_path, os.path.basename(input_tiff))
    temp_source = temp_driver.Create(temp_tiff, x_ncells, y_ncells,
                                     1, inp_data_type)
    temp_source.GetRasterBand(1).SetNoDataValue(NoData_value)
    temp_source.SetGeoTransform((top_left_x, cellsize_x, rot_1,
                                 top_left_y, rot_2, cellsize_y))
    temp_source.SetProjection(inp_srs)

    # Snap
    gdal.ReprojectImage(inp_lyr, temp_source, inp_srs, inp_srs,
                        gdal.GRA_Bilinear)
    temp_source = None

    # Read array
    d_type = pd.np.dtype(values_type)
    out_lyr = gdal.Open(temp_tiff)
    array = out_lyr.ReadAsArray(0, 0, out_lyr.RasterXSize,
                                out_lyr.RasterYSize).astype(d_type)
    array[pd.np.isclose(array, NoData_value)] = pd.np.nan
    out_lyr = None

    return array 
Example #7
Source File: functions.py    From wa with Apache License 2.0 4 votes vote down vote up
def Raster_to_Array(input_tiff, ll_corner, x_ncells, y_ncells,
                    values_type='float32'):
    """
    Loads a raster into a numpy array
    """
    # Input
    inp_lyr = gdal.Open(input_tiff)
    inp_srs = inp_lyr.GetProjection()
    inp_transform = inp_lyr.GetGeoTransform()
    inp_band = inp_lyr.GetRasterBand(1)
    inp_data_type = inp_band.DataType

    cellsize_x = inp_transform[1]
    rot_1 = inp_transform[2]
    rot_2 = inp_transform[4]
    cellsize_y = inp_transform[5]
    NoData_value = inp_band.GetNoDataValue()

    ll_x = ll_corner[0]
    ll_y = ll_corner[1]

    top_left_x = ll_x
    top_left_y = ll_y - cellsize_y*y_ncells

    # Change start point
    temp_path = tempfile.mkdtemp()
    temp_driver = gdal.GetDriverByName('GTiff')
    temp_tiff = os.path.join(temp_path, os.path.basename(input_tiff))
    temp_source = temp_driver.Create(temp_tiff, x_ncells, y_ncells,
                                     1, inp_data_type)
    temp_source.GetRasterBand(1).SetNoDataValue(NoData_value)
    temp_source.SetGeoTransform((top_left_x, cellsize_x, rot_1,
                                 top_left_y, rot_2, cellsize_y))
    temp_source.SetProjection(inp_srs)

    # Snap
    gdal.ReprojectImage(inp_lyr, temp_source, inp_srs, inp_srs,
                        gdal.GRA_Bilinear)
    temp_source = None

    # Read array
    d_type = pd.np.dtype(values_type)
    out_lyr = gdal.Open(temp_tiff)
    array = out_lyr.ReadAsArray(0, 0, out_lyr.RasterXSize,
                                out_lyr.RasterYSize).astype(d_type)
    array[pd.np.isclose(array, NoData_value)] = pd.np.nan
    out_lyr = None

    return array 
Example #8
Source File: gdal2tiles_parallel.py    From geopackage-python with GNU General Public License v3.0 4 votes vote down vote up
def scale_query_to_tile(self, dsquery, dstile, tilefilename=''):
        """Scales down query dataset to the tile dataset"""

        querysize = dsquery.RasterXSize
        tilesize = dstile.RasterXSize
        tilebands = dstile.RasterCount

        if self.options.resampling == 'average':

            # Function: gdal.RegenerateOverview()
            for i in range(1, tilebands + 1):
                # Black border around NODATA
                #if i != 4:
                #   dsquery.GetRasterBand(i).SetNoDataValue(0)
                res = gdal.RegenerateOverview(
                    dsquery.GetRasterBand(i), dstile.GetRasterBand(i),
                    'average')
                if res != 0:
                    self.error("RegenerateOverview() failed on %s, error %d" %
                               (tilefilename, res))

        elif self.options.resampling == 'antialias':

            # Scaling by PIL (Python Imaging Library) - improved Lanczos
            array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8)
            for i in range(tilebands):
                array[:, :, i] = gdalarray.BandReadAsArray(
                    dsquery.GetRasterBand(i + 1), 0, 0, querysize, querysize)
            im = Image.fromarray(array, 'RGBA')  # Always four bands
            im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS)
            if path.exists(tilefilename):
                im0 = Image.open(tilefilename)
                im1 = Image.composite(im1, im0, im1)
            im1.save(tilefilename, self.tiledriver)

        else:

            # Other algorithms are implemented by gdal.ReprojectImage().
            dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0,
                                     0.0, 0.0, tilesize / float(querysize)))
            dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0))
            
            
            res = gdal.ReprojectImage(dsquery, dstile, None, None,
                                      self.resampling)
            if res != 0:
                self.error("ReprojectImage() failed on %s, error %d" %
                           (tilefilename, res))

    # -------------------------------------------------------------------------