Python baselines.common.tf_util.adjust_shape() Examples
The following are 14
code examples of baselines.common.tf_util.adjust_shape().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
baselines.common.tf_util
, or try the search function
.
Example #1
Source File: ddpg_learner.py From ICML2019-TREX with MIT License | 6 votes |
def step(self, obs, apply_noise=True, compute_Q=True): if self.param_noise is not None and apply_noise: actor_tf = self.perturbed_actor_tf else: actor_tf = self.actor_tf feed_dict = {self.obs0: U.adjust_shape(self.obs0, [obs])} if compute_Q: action, q = self.sess.run([actor_tf, self.critic_with_actor_tf], feed_dict=feed_dict) else: action = self.sess.run(actor_tf, feed_dict=feed_dict) q = None if self.action_noise is not None and apply_noise: noise = self.action_noise() assert noise.shape == action[0].shape action += noise action = np.clip(action, self.action_range[0], self.action_range[1]) return action, q, None, None
Example #2
Source File: ddpg_learner.py From StarTrader with MIT License | 6 votes |
def step(self, obs, apply_noise=True, compute_Q=True): if self.param_noise is not None and apply_noise: actor_tf = self.perturbed_actor_tf else: actor_tf = self.actor_tf feed_dict = {self.obs0: U.adjust_shape(self.obs0, [obs])} if compute_Q: action, q = self.sess.run([actor_tf, self.critic_with_actor_tf], feed_dict=feed_dict) else: action = self.sess.run(actor_tf, feed_dict=feed_dict) q = None if self.action_noise is not None and apply_noise: noise = self.action_noise() assert noise.shape == action[0].shape action += noise action = np.clip(action, self.action_range[0], self.action_range[1]) return action, q, None, None
Example #3
Source File: ddpg_learner.py From baselines with MIT License | 6 votes |
def step(self, obs, apply_noise=True, compute_Q=True): if self.param_noise is not None and apply_noise: actor_tf = self.perturbed_actor_tf else: actor_tf = self.actor_tf feed_dict = {self.obs0: U.adjust_shape(self.obs0, [obs])} if compute_Q: action, q = self.sess.run([actor_tf, self.critic_with_actor_tf], feed_dict=feed_dict) else: action = self.sess.run(actor_tf, feed_dict=feed_dict) q = None if self.action_noise is not None and apply_noise: noise = self.action_noise() assert noise.shape == action[0].shape action += noise action = np.clip(action, self.action_range[0], self.action_range[1]) return action, q, None, None
Example #4
Source File: utils.py From HardRLWithYoutube with MIT License | 5 votes |
def make_feed_dict(self, data): return {self._placeholder: adjust_shape(self._placeholder, data)}
Example #5
Source File: policies.py From HardRLWithYoutube with MIT License | 5 votes |
def _evaluate(self, variables, observation, **extra_feed): sess = self.sess or tf.get_default_session() feed_dict = {self.X: adjust_shape(self.X, observation)} for inpt_name, data in extra_feed.items(): if inpt_name in self.__dict__.keys(): inpt = self.__dict__[inpt_name] if isinstance(inpt, tf.Tensor) and inpt._op.type == 'Placeholder': feed_dict[inpt] = adjust_shape(inpt, data) return sess.run(variables, feed_dict)
Example #6
Source File: policies.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def _evaluate(self, variables, observation, **extra_feed): sess = self.sess feed_dict = {self.X: adjust_shape(self.X, observation)} for inpt_name, data in extra_feed.items(): if inpt_name in self.__dict__.keys(): inpt = self.__dict__[inpt_name] if isinstance(inpt, tf.Tensor) and inpt._op.type == 'Placeholder': feed_dict[inpt] = adjust_shape(inpt, data) return sess.run(variables, feed_dict)
Example #7
Source File: policies.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def _evaluate(self, variables, observation, **extra_feed): sess = self.sess feed_dict = {self.X: adjust_shape(self.X, observation)} for inpt_name, data in extra_feed.items(): if inpt_name in self.__dict__.keys(): inpt = self.__dict__[inpt_name] if isinstance(inpt, tf.Tensor) and inpt._op.type == 'Placeholder': feed_dict[inpt] = adjust_shape(inpt, data) return sess.run(variables, feed_dict)
Example #8
Source File: policies.py From Reinforcement_Learning_for_Traffic_Light_Control with Apache License 2.0 | 5 votes |
def _evaluate(self, variables, observation, **extra_feed): sess = self.sess feed_dict = {self.X: adjust_shape(self.X, observation)} for inpt_name, data in extra_feed.items(): if inpt_name in self.__dict__.keys(): inpt = self.__dict__[inpt_name] if isinstance(inpt, tf.Tensor) and inpt._op.type == 'Placeholder': feed_dict[inpt] = adjust_shape(inpt, data) return sess.run(variables, feed_dict)
Example #9
Source File: utils.py From ICML2019-TREX with MIT License | 5 votes |
def make_feed_dict(self, data): return {self._placeholder: adjust_shape(self._placeholder, data)}
Example #10
Source File: policies.py From ICML2019-TREX with MIT License | 5 votes |
def _evaluate(self, variables, observation, **extra_feed): sess = self.sess feed_dict = {self.X: adjust_shape(self.X, observation)} for inpt_name, data in extra_feed.items(): if inpt_name in self.__dict__.keys(): inpt = self.__dict__[inpt_name] if isinstance(inpt, tf.Tensor) and inpt._op.type == 'Placeholder': feed_dict[inpt] = adjust_shape(inpt, data) return sess.run(variables, feed_dict)
Example #11
Source File: utils.py From ICML2019-TREX with MIT License | 5 votes |
def make_feed_dict(self, data): return {self._placeholder: adjust_shape(self._placeholder, data)}
Example #12
Source File: policies.py From ICML2019-TREX with MIT License | 5 votes |
def _evaluate(self, variables, observation, **extra_feed): sess = self.sess feed_dict = {self.X: adjust_shape(self.X, observation)} for inpt_name, data in extra_feed.items(): if inpt_name in self.__dict__.keys(): inpt = self.__dict__[inpt_name] if isinstance(inpt, tf.Tensor) and inpt._op.type == 'Placeholder': feed_dict[inpt] = adjust_shape(inpt, data) return sess.run(variables, feed_dict)
Example #13
Source File: utils.py From baselines with MIT License | 5 votes |
def make_feed_dict(self, data): return {self._placeholder: adjust_shape(self._placeholder, data)}
Example #14
Source File: policies.py From baselines with MIT License | 5 votes |
def _evaluate(self, variables, observation, **extra_feed): sess = self.sess feed_dict = {self.X: adjust_shape(self.X, observation)} for inpt_name, data in extra_feed.items(): if inpt_name in self.__dict__.keys(): inpt = self.__dict__[inpt_name] if isinstance(inpt, tf.Tensor) and inpt._op.type == 'Placeholder': feed_dict[inpt] = adjust_shape(inpt, data) return sess.run(variables, feed_dict)