Python baselines.common.tf_util.get_placeholder_cached() Examples
The following are 9
code examples of baselines.common.tf_util.get_placeholder_cached().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
baselines.common.tf_util
, or try the search function
.
Example #1
Source File: behavior_clone.py From lirpg with MIT License | 5 votes |
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4, adam_epsilon=1e-5, optim_stepsize=3e-4, ckpt_dir=None, log_dir=None, task_name=None, verbose=False): val_per_iter = int(max_iters/10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy # placeholder ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac-pi.ac)) var_list = pi.get_trainable_variables() adam = MpiAdam(var_list, epsilon=adam_epsilon) lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)]) U.initialize() adam.sync() logger.log("Pretraining with Behavior Cloning...") for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') train_loss, g = lossandgrad(ob_expert, ac_expert, True) adam.update(g, optim_stepsize) if verbose and iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') val_loss, _ = lossandgrad(ob_expert, ac_expert, True) logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss)) if ckpt_dir is None: savedir_fname = tempfile.TemporaryDirectory().name else: savedir_fname = osp.join(ckpt_dir, task_name) U.save_state(savedir_fname, var_list=pi.get_variables()) return savedir_fname
Example #2
Source File: behavior_clone.py From HardRLWithYoutube with MIT License | 5 votes |
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4, adam_epsilon=1e-5, optim_stepsize=3e-4, ckpt_dir=None, log_dir=None, task_name=None, verbose=False): val_per_iter = int(max_iters/10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy # placeholder ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac-pi.ac)) var_list = pi.get_trainable_variables() adam = MpiAdam(var_list, epsilon=adam_epsilon) lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)]) U.initialize() adam.sync() logger.log("Pretraining with Behavior Cloning...") for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') train_loss, g = lossandgrad(ob_expert, ac_expert, True) adam.update(g, optim_stepsize) if verbose and iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') val_loss, _ = lossandgrad(ob_expert, ac_expert, True) logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss)) if ckpt_dir is None: savedir_fname = tempfile.TemporaryDirectory().name else: savedir_fname = osp.join(ckpt_dir, task_name) U.save_state(savedir_fname, var_list=pi.get_variables()) return savedir_fname
Example #3
Source File: behavior_clone.py From rl_graph_generation with BSD 3-Clause "New" or "Revised" License | 5 votes |
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4, adam_epsilon=1e-5, optim_stepsize=3e-4, ckpt_dir=None, log_dir=None, task_name=None, verbose=False): val_per_iter = int(max_iters/10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy # placeholder ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac-pi.ac)) var_list = pi.get_trainable_variables() adam = MpiAdam(var_list, epsilon=adam_epsilon) lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)]) U.initialize() adam.sync() logger.log("Pretraining with Behavior Cloning...") for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') train_loss, g = lossandgrad(ob_expert, ac_expert, True) adam.update(g, optim_stepsize) if verbose and iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') val_loss, _ = lossandgrad(ob_expert, ac_expert, True) logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss)) if ckpt_dir is None: savedir_fname = tempfile.TemporaryDirectory().name else: savedir_fname = osp.join(ckpt_dir, task_name) U.save_state(savedir_fname, var_list=pi.get_variables()) return savedir_fname
Example #4
Source File: behavior_clone.py From DRL_DeliveryDuel with MIT License | 5 votes |
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4, adam_epsilon=1e-5, optim_stepsize=3e-4, ckpt_dir=None, log_dir=None, task_name=None, verbose=False): val_per_iter = int(max_iters/10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy # placeholder ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac-pi.ac)) var_list = pi.get_trainable_variables() adam = MpiAdam(var_list, epsilon=adam_epsilon) lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)]) U.initialize() adam.sync() logger.log("Pretraining with Behavior Cloning...") for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') train_loss, g = lossandgrad(ob_expert, ac_expert, True) adam.update(g, optim_stepsize) if verbose and iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') val_loss, _ = lossandgrad(ob_expert, ac_expert, True) logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss)) if ckpt_dir is None: savedir_fname = tempfile.TemporaryDirectory().name else: savedir_fname = osp.join(ckpt_dir, task_name) U.save_state(savedir_fname, var_list=pi.get_variables()) return savedir_fname
Example #5
Source File: behavior_clone.py From ICML2019-TREX with MIT License | 5 votes |
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4, adam_epsilon=1e-5, optim_stepsize=3e-4, ckpt_dir=None, log_dir=None, task_name=None, verbose=False): val_per_iter = int(max_iters/10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy # placeholder ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac-pi.ac)) var_list = pi.get_trainable_variables() adam = MpiAdam(var_list, epsilon=adam_epsilon) lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)]) U.initialize() adam.sync() logger.log("Pretraining with Behavior Cloning...") for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') train_loss, g = lossandgrad(ob_expert, ac_expert, True) adam.update(g, optim_stepsize) if verbose and iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') val_loss, _ = lossandgrad(ob_expert, ac_expert, True) logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss)) if ckpt_dir is None: savedir_fname = tempfile.TemporaryDirectory().name else: savedir_fname = osp.join(ckpt_dir, task_name) U.save_state(savedir_fname, var_list=pi.get_variables()) return savedir_fname
Example #6
Source File: behavior_clone.py From ICML2019-TREX with MIT License | 5 votes |
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4, adam_epsilon=1e-5, optim_stepsize=3e-4, ckpt_dir=None, log_dir=None, task_name=None, verbose=False): val_per_iter = int(max_iters/10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy # placeholder ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac-pi.ac)) var_list = pi.get_trainable_variables() adam = MpiAdam(var_list, epsilon=adam_epsilon) lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)]) U.initialize() adam.sync() logger.log("Pretraining with Behavior Cloning...") for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') train_loss, g = lossandgrad(ob_expert, ac_expert, True) adam.update(g, optim_stepsize) if verbose and iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') val_loss, _ = lossandgrad(ob_expert, ac_expert, True) logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss)) if ckpt_dir is None: savedir_fname = tempfile.TemporaryDirectory().name else: savedir_fname = osp.join(ckpt_dir, task_name) U.save_state(savedir_fname, var_list=pi.get_variables()) return savedir_fname
Example #7
Source File: behavior_clone.py From sonic_contest with MIT License | 5 votes |
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4, adam_epsilon=1e-5, optim_stepsize=3e-4, ckpt_dir=None, log_dir=None, task_name=None, verbose=False): val_per_iter = int(max_iters/10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy # placeholder ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac-pi.ac)) var_list = pi.get_trainable_variables() adam = MpiAdam(var_list, epsilon=adam_epsilon) lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)]) U.initialize() adam.sync() logger.log("Pretraining with Behavior Cloning...") for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') train_loss, g = lossandgrad(ob_expert, ac_expert, True) adam.update(g, optim_stepsize) if verbose and iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') val_loss, _ = lossandgrad(ob_expert, ac_expert, True) logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss)) if ckpt_dir is None: savedir_fname = tempfile.TemporaryDirectory().name else: savedir_fname = osp.join(ckpt_dir, task_name) U.save_state(savedir_fname, var_list=pi.get_variables()) return savedir_fname
Example #8
Source File: behavior_clone.py From self-imitation-learning with MIT License | 5 votes |
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4, adam_epsilon=1e-5, optim_stepsize=3e-4, ckpt_dir=None, log_dir=None, task_name=None, verbose=False): val_per_iter = int(max_iters/10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy # placeholder ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac-pi.ac)) var_list = pi.get_trainable_variables() adam = MpiAdam(var_list, epsilon=adam_epsilon) lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)]) U.initialize() adam.sync() logger.log("Pretraining with Behavior Cloning...") for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') train_loss, g = lossandgrad(ob_expert, ac_expert, True) adam.update(g, optim_stepsize) if verbose and iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') val_loss, _ = lossandgrad(ob_expert, ac_expert, True) logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss)) if ckpt_dir is None: savedir_fname = tempfile.TemporaryDirectory().name else: savedir_fname = osp.join(ckpt_dir, task_name) U.save_state(savedir_fname, var_list=pi.get_variables()) return savedir_fname
Example #9
Source File: behavior_clone.py From baselines with MIT License | 5 votes |
def learn(env, policy_func, dataset, optim_batch_size=128, max_iters=1e4, adam_epsilon=1e-5, optim_stepsize=3e-4, ckpt_dir=None, log_dir=None, task_name=None, verbose=False): val_per_iter = int(max_iters/10) ob_space = env.observation_space ac_space = env.action_space pi = policy_func("pi", ob_space, ac_space) # Construct network for new policy # placeholder ob = U.get_placeholder_cached(name="ob") ac = pi.pdtype.sample_placeholder([None]) stochastic = U.get_placeholder_cached(name="stochastic") loss = tf.reduce_mean(tf.square(ac-pi.ac)) var_list = pi.get_trainable_variables() adam = MpiAdam(var_list, epsilon=adam_epsilon) lossandgrad = U.function([ob, ac, stochastic], [loss]+[U.flatgrad(loss, var_list)]) U.initialize() adam.sync() logger.log("Pretraining with Behavior Cloning...") for iter_so_far in tqdm(range(int(max_iters))): ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size, 'train') train_loss, g = lossandgrad(ob_expert, ac_expert, True) adam.update(g, optim_stepsize) if verbose and iter_so_far % val_per_iter == 0: ob_expert, ac_expert = dataset.get_next_batch(-1, 'val') val_loss, _ = lossandgrad(ob_expert, ac_expert, True) logger.log("Training loss: {}, Validation loss: {}".format(train_loss, val_loss)) if ckpt_dir is None: savedir_fname = tempfile.TemporaryDirectory().name else: savedir_fname = osp.join(ckpt_dir, task_name) U.save_variables(savedir_fname, variables=pi.get_variables()) return savedir_fname