Python utils.split_data() Examples
The following are 7
code examples of utils.split_data().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: normal_experiment.py From blood-glucose-prediction with GNU General Public License v3.0 | 6 votes |
def load_dataset(cfg): length_std = float(cfg['length_std']) length_mean = float(cfg['length_mean']) noise_std = float(cfg['noise_std']) length = int(cfg['length']) nb_past_steps = int(cfg['nb_past_steps']) nb_future_steps = int(cfg['nb_future_steps']) train_fraction = float(cfg['train_fraction']) test_fraction = float(cfg['test_fraction']) valid_fraction = float(cfg['valid_fraction']) sequence = generate_sequence(length_std, length_mean, noise_std, length) xs, ys = utils.sequence_to_supervised(sequence, nb_past_steps, nb_future_steps) xs = np.expand_dims(xs, axis=2) ys = np.expand_dims(ys, axis=1) x_train, x_valid, x_test = utils.split_data(xs, train_fraction, valid_fraction, test_fraction) y_train, y_valid, y_test = utils.split_data(ys, train_fraction, valid_fraction, test_fraction) return x_train, y_train, x_valid, y_valid, x_test, y_test
Example #2
Source File: device_sequence_classifier.py From IoT-device-type-identification with MIT License | 6 votes |
def find_opt_seq_len(self, validation, update=True): # Finds minimal seq length s.t accuracy=1 on all sessions opt_seq_len = 1 # Find minimal sequence length s.t FPR=1 for all other devs for dev_name, dev_sessions in validation.groupby('device_category'): dev_sessions = utils.split_data(dev_sessions, y_col=self.y_col)[0] is_dev = self.is_dev(dev_name) start = 0 seq_len = 1 while start + seq_len < len(dev_sessions): is_dev_pred = (self.predict([dev_sessions[start:start + seq_len]]))[0] if is_dev == is_dev_pred: start += 1 else: start = max(1, start-2) seq_len += 2 opt_seq_len = max(seq_len, opt_seq_len) # Return minimal seq length s.t accuracy=1 if update: self.opt_seq_len = opt_seq_len return opt_seq_len
Example #3
Source File: ohio.py From blood-glucose-prediction with GNU General Public License v3.0 | 5 votes |
def load_data(cfg): xml_path = cfg['xml_path'] nb_past_steps = int(cfg['nb_past_steps']) nb_future_steps = int(cfg['nb_future_steps']) train_fraction = float(cfg['train_fraction']) valid_fraction = float(cfg['valid_fraction']) test_fraction = float(cfg['test_fraction']) xs, ys = load_glucose_data(xml_path, nb_past_steps, nb_future_steps) ys = np.expand_dims(ys, axis=1) x_train, x_valid, x_test = utils.split_data(xs, train_fraction, valid_fraction, test_fraction) y_train, y_valid, y_test = utils.split_data(ys, train_fraction, valid_fraction, test_fraction) # scale data scale = float(cfg['scale']) x_train *= scale y_train *= scale x_valid *= scale y_valid *= scale x_test *= scale y_test *= scale return x_train, y_train, x_valid, y_valid, x_test, y_test
Example #4
Source File: device_sequence_classifier.py From IoT-device-type-identification with MIT License | 5 votes |
def split_data(self, data): data = utils.clear_missing_data(data) x = [] y = [] for dev_name, dev_sessions in data.groupby(self.y_col): dev_sessions = dev_sessions.drop(['device_category'], axis=1) dev_sessions = utils.perform_feature_scaling(dev_sessions) is_dev = self.is_dev(dev_name) seqs = self.get_sub_sequences(dev_sessions) x += seqs y += [is_dev]*len(seqs) return x, y
Example #5
Source File: multiple_device_classifier.py From IoT-device-type-identification with MIT License | 5 votes |
def eval_on_dataset(self, dataset, is_dataset_csv=False): if is_dataset_csv: dataset = utils.load_data_from_csv(dataset, self.use_cols) # Split data to features and labels x, y_true = utils.split_data(dataset, self.y_col) # Classify data y_pred = self.predict(x) # Evaluate predictions return utils.eval_predictions(y_true, y_pred)
Example #6
Source File: device_session_classifier.py From IoT-device-type-identification with MIT License | 5 votes |
def train(self, train): x_train, y_train = utils.split_data(train, y_col=self.y_col) self.model.fit(x_train, y_train)
Example #7
Source File: device_session_classifier.py From IoT-device-type-identification with MIT License | 5 votes |
def split_data(self, data): x, y = utils.split_data(data, self.y_col) y = self.get_is_dev_vec(y) return x, y