Python utils.init() Examples

The following are 17 code examples of utils.init(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module utils , or try the search function .
Example #1
Source File: distributions.py    From gym-miniworld with Apache License 2.0 5 votes vote down vote up
def __init__(self, num_inputs, num_outputs):
        super(Categorical, self).__init__()

        init_ = lambda m: init(m,
              nn.init.orthogonal_,
              lambda x: nn.init.constant_(x, 0),
              gain=0.01)

        self.linear = init_(nn.Linear(num_inputs, num_outputs)) 
Example #2
Source File: distributions.py    From carla-rl with MIT License 5 votes vote down vote up
def __init__(self, num_inputs, num_outputs):
        super(DiagGaussian, self).__init__()

        # init_ = lambda m: init(m,
        #       init_normc_,
        #       lambda x: nn.init.constant_(x, 0))
        # self.fc_mean = init_(nn.Linear(num_inputs, num_outputs))
        
        self.fc_mean = nn.Linear(num_inputs, num_outputs)
        self.fc_mean.bias.data[0] = 0.5 # Throttle
        self.fc_mean.bias.data[1] = 0.0 # Brake
        self.fc_mean.bias.data[2] = 0.0 # Steer
        self.fc_mean.weight.data.fill_(0)
        self.logstd = AddBias(-2.3 * torch.ones(num_outputs)) 
Example #3
Source File: distributions.py    From carla-rl with MIT License 5 votes vote down vote up
def __init__(self, num_inputs, num_outputs):
        super(Categorical, self).__init__()

        init_ = lambda m: init(m,
              nn.init.orthogonal_,
              lambda x: nn.init.constant_(x, 0),
              gain=0.01)

        self.linear = init_(nn.Linear(num_inputs, num_outputs)) 
Example #4
Source File: model.py    From carla-rl with MIT License 5 votes vote down vote up
def __init__(self, recurrent, recurrent_input_size, hidden_size):
        super(NNBase, self).__init__()

        self._hidden_size = hidden_size
        self._recurrent = recurrent

        if recurrent:
            self.gru = nn.GRU(recurrent_input_size, hidden_size)
            for name, param in self.gru.named_parameters():
                if 'bias' in name:
                    nn.init.constant_(param, 0)
                elif 'weight' in name:
                    nn.init.orthogonal_(param) 
Example #5
Source File: distributions.py    From marl_transfer with MIT License 5 votes vote down vote up
def __init__(self, num_inputs, num_outputs):
        super(Categorical, self).__init__()

        init_ = lambda m: init(m,
              nn.init.orthogonal_,
              lambda x: nn.init.constant_(x, 0),
              gain=0.01)

        self.linear = init_(nn.Linear(num_inputs, num_outputs)) 
Example #6
Source File: distributions.py    From pytorch-pommerman-rl with MIT License 5 votes vote down vote up
def __init__(self, num_inputs, num_outputs):
        super(DiagGaussian, self).__init__()

        init_ = lambda m: init(m,
              init_normc_,
              lambda x: nn.init.constant_(x, 0))

        self.fc_mean = init_(nn.Linear(num_inputs, num_outputs))
        self.logstd = AddBias(torch.zeros(num_outputs)) 
Example #7
Source File: distributions.py    From pytorch-pommerman-rl with MIT License 5 votes vote down vote up
def __init__(self, num_inputs, num_outputs):
        super(Categorical, self).__init__()

        init_ = lambda m: init(m,
              nn.init.orthogonal_,
              lambda x: nn.init.constant_(x, 0),
              gain=0.01)

        self.linear = init_(nn.Linear(num_inputs, num_outputs)) 
Example #8
Source File: distributions.py    From gym-miniworld with Apache License 2.0 5 votes vote down vote up
def __init__(self, num_inputs, num_outputs):
        super(DiagGaussian, self).__init__()

        init_ = lambda m: init(m,
              init_normc_,
              lambda x: nn.init.constant_(x, 0))

        self.fc_mean = init_(nn.Linear(num_inputs, num_outputs))
        self.logstd = AddBias(torch.zeros(num_outputs)) 
Example #9
Source File: model.py    From dal with MIT License 5 votes vote down vote up
def __init__(self, recurrent, recurrent_input_size, hidden_size):
        super(NNBase, self).__init__()

        self._hidden_size = hidden_size
        self._recurrent = recurrent

        if recurrent:
            self.gru = nn.GRU(recurrent_input_size, hidden_size)
            for name, param in self.gru.named_parameters():
                if 'bias' in name:
                    nn.init.constant_(param, 0)
                elif 'weight' in name:
                    nn.init.orthogonal_(param) 
Example #10
Source File: model.py    From gym-miniworld with Apache License 2.0 5 votes vote down vote up
def __init__(self, num_inputs, recurrent=False, hidden_size=64):
        super(MLPBase, self).__init__(recurrent, num_inputs, hidden_size)

        if recurrent:
            num_inputs = hidden_size

        init_ = lambda m: init(m,
            init_normc_,
            lambda x: nn.init.constant_(x, 0))

        self.actor = nn.Sequential(
            init_(nn.Linear(num_inputs, hidden_size)),
            nn.Tanh(),
            init_(nn.Linear(hidden_size, hidden_size)),
            nn.Tanh()
        )

        self.critic = nn.Sequential(
            init_(nn.Linear(num_inputs, hidden_size)),
            nn.Tanh(),
            init_(nn.Linear(hidden_size, hidden_size)),
            nn.Tanh()
        )

        self.critic_linear = init_(nn.Linear(hidden_size, 1))

        self.train() 
Example #11
Source File: model.py    From gym-miniworld with Apache License 2.0 5 votes vote down vote up
def __init__(self, num_inputs, recurrent=False, hidden_size=128):
        super(CNNBase, self).__init__(recurrent, hidden_size, hidden_size)

        init_ = lambda m: init(m,
            nn.init.orthogonal_,
            lambda x: nn.init.constant_(x, 0),
            nn.init.calculate_gain('relu'))

        # For 80x60 input
        self.main = nn.Sequential(
            init_(nn.Conv2d(num_inputs, 32, kernel_size=5, stride=2)),
            nn.BatchNorm2d(32),
            nn.ReLU(),

            init_(nn.Conv2d(32, 32, kernel_size=5, stride=2)),
            nn.BatchNorm2d(32),
            nn.ReLU(),

            init_(nn.Conv2d(32, 32, kernel_size=4, stride=2)),
            nn.BatchNorm2d(32),
            nn.ReLU(),

            #Print(),
            Flatten(),

            #nn.Dropout(0.2),

            init_(nn.Linear(32 * 7 * 5, hidden_size)),
            nn.ReLU()
        )

        init_ = lambda m: init(m,
            nn.init.orthogonal_,
            lambda x: nn.init.constant_(x, 0))

        self.critic_linear = init_(nn.Linear(hidden_size, 1))

        self.train() 
Example #12
Source File: model.py    From gym-miniworld with Apache License 2.0 5 votes vote down vote up
def __init__(self, recurrent, recurrent_input_size, hidden_size):
        super(NNBase, self).__init__()

        self._hidden_size = hidden_size
        self._recurrent = recurrent

        if recurrent:
            self.gru = nn.GRUCell(recurrent_input_size, hidden_size)
            nn.init.orthogonal_(self.gru.weight_ih.data)
            nn.init.orthogonal_(self.gru.weight_hh.data)
            self.gru.bias_ih.data.fill_(0)
            self.gru.bias_hh.data.fill_(0) 
Example #13
Source File: distributions.py    From dal with MIT License 5 votes vote down vote up
def __init__(self, num_inputs, num_outputs):
        super(DiagGaussian, self).__init__()

        init_ = lambda m: init(m,
            nn.init.orthogonal_,
            lambda x: nn.init.constant_(x, 0))

        self.fc_mean = init_(nn.Linear(num_inputs, num_outputs))
        self.logstd = AddBias(torch.zeros(num_outputs)) 
Example #14
Source File: distributions.py    From dal with MIT License 5 votes vote down vote up
def __init__(self, num_inputs, num_outputs):
        super(Categorical, self).__init__()

        init_ = lambda m: init(m,
            nn.init.orthogonal_,
            lambda x: nn.init.constant_(x, 0),
            gain=0.01)

        self.linear = init_(nn.Linear(num_inputs, num_outputs)) 
Example #15
Source File: model.py    From dal with MIT License 5 votes vote down vote up
def __init__(self, num_inputs, recurrent=False, hidden_size=64):
        super(MLPBase, self).__init__(recurrent, num_inputs, hidden_size)

        if recurrent:
            num_inputs = hidden_size

        init_ = lambda m: init(m,
            nn.init.orthogonal_,
            lambda x: nn.init.constant_(x, 0),
            np.sqrt(2))

        self.actor = nn.Sequential(
            init_(nn.Linear(num_inputs, hidden_size)),
            nn.Tanh(),
            init_(nn.Linear(hidden_size, hidden_size)),
            nn.Tanh()
        )

        self.critic = nn.Sequential(
            init_(nn.Linear(num_inputs, hidden_size)),
            nn.Tanh(),
            init_(nn.Linear(hidden_size, hidden_size)),
            nn.Tanh()
        )

        self.critic_linear = init_(nn.Linear(hidden_size, 1))

        self.train() 
Example #16
Source File: model.py    From carla-rl with MIT License 4 votes vote down vote up
def __init__(self, img_num_features, v_num_features, recurrent=False, hidden_size=512):
        super(CNNBase, self).__init__(recurrent, hidden_size, hidden_size)

        init_ = lambda m: init(m,
            nn.init.orthogonal_,
            lambda x: nn.init.constant_(x, 0),
            nn.init.calculate_gain('relu'))

        self.cnn_backbone = nn.Sequential(
            init_(nn.Conv2d(img_num_features, 32, 8, stride=4)),
            nn.ReLU(),
            init_(nn.Conv2d(32, 64, 4, stride=2)),
            nn.ReLU(),
            init_(nn.Conv2d(64, 32, 3, stride=1)),
            nn.ReLU(),
            Flatten(),
            init_(nn.Linear(32 * 7 * 7, hidden_size)),
            nn.ReLU()
        )

        init_ = lambda m: init(m,
            nn.init.orthogonal_,
            lambda x: nn.init.constant_(x, 0))

        self.fc_backbone = nn.Sequential(
            init_(nn.Linear(v_num_features, hidden_size//4)),
            nn.ReLU(),
            init_(nn.Linear(hidden_size//4, hidden_size//2)),
            nn.ReLU(),
            init_(nn.Linear(hidden_size//2, hidden_size)),
            nn.ReLU()
        )

        self.fc_joint = nn.Sequential(
            init_(nn.Linear(hidden_size*2, hidden_size*2)),
            nn.ReLU(),
            init_(nn.Linear(hidden_size*2, hidden_size)),
            nn.ReLU(),
            init_(nn.Linear(hidden_size, hidden_size)),
            nn.ReLU()
        )

        self.critic_linear = init_(nn.Linear(hidden_size, 1))

        self.train() 
Example #17
Source File: model.py    From dal with MIT License 4 votes vote down vote up
def __init__(self, num_inputs, recurrent=False, hidden_size=512):
        super(CNNBase, self).__init__(recurrent, hidden_size, hidden_size)

        init_ = lambda m: init(m,
            nn.init.orthogonal_,
            lambda x: nn.init.constant_(x, 0),
            nn.init.calculate_gain('relu'))

        num_inputs = 6
        # hidden_size = 100
        # self.main = nn.Sequential(
        #     init_(nn.Conv2d(num_inputs, 32, 8, stride=4)),
        #     nn.ReLU(),
        #     init_(nn.Conv2d(32, 64, 4, stride=2)),
        #     nn.ReLU(),
        #     init_(nn.Conv2d(64, 32, 3, stride=1)),
        #     nn.ReLU(),
        #     Flatten(),
        #     init_(nn.Linear(32 * 7 * 7, hidden_size)),
        #     nn.ReLU()
        # )

        # self.main = nn.Sequential(
        #     init_(nn.Conv2d(num_inputs, 16, 3,padding=1, stride=1)),
        #     nn.ReLU(),
        #     nn.MaxPool2d(kernel_size = 2),
        #     init_(nn.Conv2d(16, 32, 3,padding=1, stride=1)),
        #     nn.ReLU(),
        #     nn.MaxPool2d(kernel_size = 2),
        #     init_(nn.Conv2d(32, 32, 3,padding=1, stride=1)),
        #     nn.ReLU(),
        #     nn.MaxPool2d(kernel_size = 2),
        #     init_(nn.Conv2d(32, 16, 3,padding=1, stride=1)),
        #     nn.ReLU(),
        #     # nn.MaxPool2d(kernel_size = 2),
        #     Flatten(),
        #     init_(nn.Linear(16 * 11 * 11, hidden_size)),
        #     nn.ReLU()
        # )

        self.main = nn.Sequential(
            init_(nn.Conv2d(num_inputs, 16, 3,padding=1, stride=1)),
            nn.ReLU(),
            init_(nn.Conv2d(16, 32, 3,padding=1, stride=1)),
            nn.ReLU(),
            init_(nn.Conv2d(32, 32, 3,padding=1, stride=1)),
            nn.ReLU(),
            init_(nn.Conv2d(32, 16, 3,padding=1, stride=1)),
            nn.ReLU(),
            Flatten(),
            init_(nn.Linear(16 * 11 * 11, hidden_size)),
            nn.ReLU()
        )

        init_ = lambda m: init(m,
            nn.init.orthogonal_,
            lambda x: nn.init.constant_(x, 0))

        self.critic_linear = init_(nn.Linear(hidden_size, 1))

        self.train()