Python utils.get_models() Examples
The following are 7
code examples of utils.get_models().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: train.py From glad with BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_args(): parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument('--dexp', help='root experiment folder', default='exp') parser.add_argument('--model', help='which model to use', default='glad', choices=get_models()) parser.add_argument('--epoch', help='max epoch to run for', default=50, type=int) parser.add_argument('--demb', help='word embedding size', default=400, type=int) parser.add_argument('--dhid', help='hidden state size', default=200, type=int) parser.add_argument('--batch_size', help='batch size', default=50, type=int) parser.add_argument('--lr', help='learning rate', default=1e-3, type=float) parser.add_argument('--stop', help='slot to early stop on', default='joint_goal') parser.add_argument('--resume', help='save directory to resume from') parser.add_argument('-n', '--nick', help='nickname for model', default='default') parser.add_argument('--seed', default=42, help='random seed', type=int) parser.add_argument('--test', action='store_true', help='run in evaluation only mode') parser.add_argument('--gpu', type=int, help='which GPU to use') parser.add_argument('--dropout', nargs='*', help='dropout rates', default=['emb=0.2', 'local=0.2', 'global=0.2']) args = parser.parse_args() args.dout = os.path.join(args.dexp, args.model, args.nick) args.dropout = {d.split('=')[0]: float(d.split('=')[1]) for d in args.dropout} if not os.path.isdir(args.dout): os.makedirs(args.dout) return args
Example #2
Source File: utils_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def test_get_models(self): with tempfile.TemporaryDirectory() as models_dir: model1 = '000013-model.meta' model2 = '000017-model.meta' f1 = open(os.path.join(models_dir, model1), 'w') f1.close() f2 = open(os.path.join(models_dir, model2), 'w') f2.close() model_nums_names = utils.get_models(models_dir) self.assertEqual(len(model_nums_names), 2) self.assertEqual(model_nums_names[0], (13, '000013-model')) self.assertEqual(model_nums_names[1], (17, '000017-model'))
Example #3
Source File: minigo.py From Gun-Detector with Apache License 2.0 | 5 votes |
def validate(trained_models_dir, holdout_dir, estimator_model_dir, params): """Validate the latest model on the holdout dataset. Args: trained_models_dir: Directories where the completed generations/models are. holdout_dir: Directories where holdout data are. estimator_model_dir: tf.estimator model directory. params: An object of hyperparameters for the model. """ model_num, _ = utils.get_latest_model(trained_models_dir) # Get the holdout game data nums_names = utils.get_models(trained_models_dir) # Model N was trained on games up through model N-1, so the validation set # should only be for models through N-1 as well, thus the (model_num) term. models = [num_name for num_name in nums_names if num_name[0] < model_num] # pair is a tuple of (model_num, model_name), like (13, 000013-modelname) holdout_dirs = [os.path.join(holdout_dir, pair[1]) for pair in models[-params.holdout_generation:]] tf_records = [] with utils.logged_timer('Building lists of holdout files'): for record_dir in holdout_dirs: if os.path.exists(record_dir): # make sure holdout dir exists tf_records.extend( tf.gfile.Glob(os.path.join(record_dir, '*'+_TF_RECORD_SUFFIX))) print('The length of tf_records is {}.'.format(len(tf_records))) first_tf_record = os.path.basename(tf_records[0]) last_tf_record = os.path.basename(tf_records[-1]) with utils.logged_timer('Validating from {} to {}'.format( first_tf_record, last_tf_record)): dualnet.validate(estimator_model_dir, tf_records, params)
Example #4
Source File: utils_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def test_get_models(self): with tempfile.TemporaryDirectory() as models_dir: model1 = '000013-model.meta' model2 = '000017-model.meta' f1 = open(os.path.join(models_dir, model1), 'w') f1.close() f2 = open(os.path.join(models_dir, model2), 'w') f2.close() model_nums_names = utils.get_models(models_dir) self.assertEqual(len(model_nums_names), 2) self.assertEqual(model_nums_names[0], (13, '000013-model')) self.assertEqual(model_nums_names[1], (17, '000017-model'))
Example #5
Source File: minigo.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def validate(trained_models_dir, holdout_dir, estimator_model_dir, params): """Validate the latest model on the holdout dataset. Args: trained_models_dir: Directories where the completed generations/models are. holdout_dir: Directories where holdout data are. estimator_model_dir: tf.estimator model directory. params: A MiniGoParams instance of hyperparameters for the model. """ model_num, _ = utils.get_latest_model(trained_models_dir) # Get the holdout game data nums_names = utils.get_models(trained_models_dir) # Model N was trained on games up through model N-1, so the validation set # should only be for models through N-1 as well, thus the (model_num) term. models = [num_name for num_name in nums_names if num_name[0] < model_num] # pair is a tuple of (model_num, model_name), like (13, 000013-modelname) holdout_dirs = [os.path.join(holdout_dir, pair[1]) for pair in models[-params.holdout_generation:]] tf_records = [] with utils.logged_timer('Building lists of holdout files'): for record_dir in holdout_dirs: if os.path.exists(record_dir): # make sure holdout dir exists tf_records.extend( tf.gfile.Glob(os.path.join(record_dir, '*'+_TF_RECORD_SUFFIX))) if not tf_records: print('No holdout dataset for validation! ' 'Please check your holdout directory: {}'.format(holdout_dir)) return print('The length of tf_records is {}.'.format(len(tf_records))) first_tf_record = os.path.basename(tf_records[0]) last_tf_record = os.path.basename(tf_records[-1]) with utils.logged_timer('Validating from {} to {}'.format( first_tf_record, last_tf_record)): dualnet.validate(estimator_model_dir, tf_records, params)
Example #6
Source File: utils_test.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def test_get_models(self): with tempfile.TemporaryDirectory() as models_dir: model1 = '000013-model.meta' model2 = '000017-model.meta' f1 = open(os.path.join(models_dir, model1), 'w') f1.close() f2 = open(os.path.join(models_dir, model2), 'w') f2.close() model_nums_names = utils.get_models(models_dir) self.assertEqual(len(model_nums_names), 2) self.assertEqual(model_nums_names[0], (13, '000013-model')) self.assertEqual(model_nums_names[1], (17, '000017-model'))
Example #7
Source File: minigo.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def validate(trained_models_dir, holdout_dir, estimator_model_dir, params): """Validate the latest model on the holdout dataset. Args: trained_models_dir: Directories where the completed generations/models are. holdout_dir: Directories where holdout data are. estimator_model_dir: tf.estimator model directory. params: A MiniGoParams instance of hyperparameters for the model. """ model_num, _ = utils.get_latest_model(trained_models_dir) # Get the holdout game data nums_names = utils.get_models(trained_models_dir) # Model N was trained on games up through model N-1, so the validation set # should only be for models through N-1 as well, thus the (model_num) term. models = [num_name for num_name in nums_names if num_name[0] < model_num] # pair is a tuple of (model_num, model_name), like (13, 000013-modelname) holdout_dirs = [os.path.join(holdout_dir, pair[1]) for pair in models[-params.holdout_generation:]] tf_records = [] with utils.logged_timer('Building lists of holdout files'): for record_dir in holdout_dirs: if os.path.exists(record_dir): # make sure holdout dir exists tf_records.extend( tf.gfile.Glob(os.path.join(record_dir, '*'+_TF_RECORD_SUFFIX))) if not tf_records: print('No holdout dataset for validation! ' 'Please check your holdout directory: {}'.format(holdout_dir)) return print('The length of tf_records is {}.'.format(len(tf_records))) first_tf_record = os.path.basename(tf_records[0]) last_tf_record = os.path.basename(tf_records[-1]) with utils.logged_timer('Validating from {} to {}'.format( first_tf_record, last_tf_record)): dualnet.validate(estimator_model_dir, tf_records, params)