Python utils.load_spectrograms() Examples
The following are 3
code examples of utils.load_spectrograms().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: eval.py From tacotron with Apache License 2.0 | 5 votes |
def eval(): # Load graph g = Graph(mode="eval"); print("Evaluation Graph loaded") # Load data fpaths, text_lengths, texts = load_data(mode="eval") # Parse text = np.fromstring(texts[0], np.int32) # (None,) fname, mel, mag = load_spectrograms(fpaths[0]) x = np.expand_dims(text, 0) # (1, None) y = np.expand_dims(mel, 0) # (1, None, n_mels*r) z = np.expand_dims(mag, 0) # (1, None, n_mfccs) saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Restored!") writer = tf.summary.FileWriter(hp.logdir, sess.graph) # Feed Forward ## mel y_hat = np.zeros((1, y.shape[1], y.shape[2]), np.float32) # hp.n_mels*hp.r for j in range(y.shape[1]): _y_hat = sess.run(g.y_hat, {g.x: x, g.y: y_hat}) y_hat[:, j, :] = _y_hat[:, j, :] ## mag merged, gs = sess.run([g.merged, g.global_step], {g.x:x, g.y:y, g.y_hat: y_hat, g.z: z}) writer.add_summary(merged, global_step=gs) writer.close()
Example #2
Source File: prepare_acoustic_features.py From ophelia with Apache License 2.0 | 5 votes |
def proc(fpath, hp): if not os.path.isfile(fpath): return fname, mel, mag, full_mel = load_spectrograms(hp, fpath) np.save("{}/{}".format(hp.coarse_audio_dir, fname.replace("wav", "npy")), mel) np.save("{}/{}".format(hp.full_audio_dir, fname.replace("wav", "npy")), mag) np.save("{}/{}".format(hp.full_mel_dir, fname.replace("wav", "npy")), full_mel)
Example #3
Source File: evaluate.py From tacotron with Apache License 2.0 | 4 votes |
def evaluate(): # Load graph g = Graph(mode="evaluate"); print("Graph loaded") # Load data fpaths, _, texts = load_data(mode="evaluate") lengths = [len(t) for t in texts] maxlen = sorted(lengths, reverse=True)[0] new_texts = np.zeros((len(texts), maxlen), np.int32) for i, text in enumerate(texts): new_texts[i, :len(text)] = [idx for idx in text] #new_texts = np.split(new_texts, 2) new_texts = new_texts[:evaluate_wav_num] half_size = int(len(fpaths)/2) print(half_size) #new_fpaths = [fpaths[:half_size], fpaths[half_size:]] fpaths = fpaths[:evaluate_wav_num] saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint(hp.logdir)); print("Evaluate Model Restored!") """ err = 0.0 for i, t_split in enumerate(new_texts): y_hat = np.zeros((t_split.shape[0], 200, hp.n_mels*hp.r), np.float32) # hp.n_mels*hp.r for j in tqdm.tqdm(range(200)): _y_hat = sess.run(g.y_hat, {g.x: t_split, g.y: y_hat}) y_hat[:, j, :] = _y_hat[:, j, :] mags = sess.run(g.z_hat, {g.y_hat: y_hat}) for k, mag in enumerate(mags): fname, mel_ans, mag_ans = load_spectrograms(new_fpaths[i][k]) print("File {} is being evaluated ...".format(fname)) audio = spectrogram2wav(mag) audio_ans = spectrogram2wav(mag_ans) err += calculate_mse(audio, audio_ans) err = err/float(len(fpaths)) print(err) """ # Feed Forward ## mel y_hat = np.zeros((new_texts.shape[0], 200, hp.n_mels*hp.r), np.float32) # hp.n_mels*hp.r for j in tqdm.tqdm(range(200)): _y_hat = sess.run(g.y_hat, {g.x: new_texts, g.y: y_hat}) y_hat[:, j, :] = _y_hat[:, j, :] ## mag mags = sess.run(g.z_hat, {g.y_hat: y_hat}) err = 0.0 for i, mag in enumerate(mags): fname, mel_ans, mag_ans = load_spectrograms(fpaths[i]) print("File {} is being evaluated ...".format(fname)) #audio = spectrogram2wav(mag) #audio_ans = spectrogram2wav(mag_ans) #err += calculate_mse(audio, audio_ans) err += calculate_mse(mag, mag_ans) err = err/float(len(fpaths)) print(err) opf.write(hp.logdir + " spectrogram mse: " + str(err) + "\n")