Python utils.count_parameters_in_MB() Examples
The following are 30
code examples of utils.count_parameters_in_MB().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: train_search.py From NAO_pytorch with GNU General Public License v3.0 | 5 votes |
def build_cifar100(model_state_dict=None, optimizer_state_dict=None, **kwargs): epoch = kwargs.pop('epoch') ratio = kwargs.pop('ratio') train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size) train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=valid_transform) num_train = len(train_data) assert num_train == len(valid_data) indices = list(range(num_train)) split = int(np.floor(ratio * num_train)) np.random.shuffle(indices) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.child_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.child_eval_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True, num_workers=16) model = NASWSNetworkCIFAR(args, 100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) optimizer = torch.optim.SGD( model.parameters(), args.child_lr_max, momentum=0.9, weight_decay=args.child_l2_reg, ) if model_state_dict is not None: model.load_state_dict(model_state_dict) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #2
Source File: test.py From NAS-Benchmark with GNU General Public License v3.0 | 5 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = True torch.manual_seed(args.seed) cudnn.enabled=True torch.cuda.manual_seed(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype) model = model.cuda() utils.load(model, args.model_path) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() _, test_transform = utils._data_transforms_cifar10(args) test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform) test_queue = torch.utils.data.DataLoader( test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2) model.drop_path_prob = args.drop_path_prob test_acc, test_obj = infer(test_queue, model, criterion) logging.info('test_acc %f', test_acc)
Example #3
Source File: train_cifar.py From NAS-Benchmark with GNU General Public License v3.0 | 5 votes |
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs): epoch = kwargs.pop('epoch') train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16) model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob, args.use_aux_head, args.steps, args.arch) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) logging.info("multi adds = %fM", model.multi_adds / 1000000) if model_state_dict is not None: model.load_state_dict(model_state_dict) if torch.cuda.device_count() > 1: logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !") model = nn.DataParallel(model) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD( model.parameters(), args.lr_max, momentum=0.9, weight_decay=args.l2_reg, ) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #4
Source File: test.py From NAS-Benchmark with GNU General Public License v3.0 | 5 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = True torch.manual_seed(args.seed) cudnn.enabled=True torch.cuda.manual_seed(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype) model = model.cuda() utils.load(model, args.model_path) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() _, test_transform = utils.data_transforms_cifar10(args) test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform) test_queue = torch.utils.data.DataLoader( test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2) model.drop_path_prob = args.drop_path_prob test_acc, test_obj = infer(test_queue, model, criterion) logging.info('test_acc %f', test_acc)
Example #5
Source File: test.py From darts with Apache License 2.0 | 5 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = True torch.manual_seed(args.seed) cudnn.enabled=True torch.cuda.manual_seed(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype) model = model.cuda() utils.load(model, args.model_path) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() _, test_transform = utils._data_transforms_cifar10(args) test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform) test_queue = torch.utils.data.DataLoader( test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2) model.drop_path_prob = args.drop_path_prob test_acc, test_obj = infer(test_queue, model, criterion) logging.info('test_acc %f', test_acc)
Example #6
Source File: cnn_general_search_policies.py From eval-nas with MIT License | 5 votes |
def initialize_model(self): """ Initialize model, may change across different model. :return: """ args = self.args model = self.model_fn(args) if args.gpus > 0: if self.args.gpus == 1: model = model.cuda() self.parallel_model = model else: self.model = model self.parallel_model = nn.DataParallel(self.model).cuda() # IPython.embed(header='checking replicas and others.') else: self.parallel_model = model # rewrite the pointer model = self.parallel_model logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) optimizer = torch.optim.SGD( model.parameters(), args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) # scheduler as Cosine. scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( optimizer, float(args.epochs), eta_min=args.learning_rate_min) return model, optimizer, scheduler
Example #7
Source File: test.py From sgas with MIT License | 5 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = True torch.manual_seed(args.seed) cudnn.enabled=True torch.cuda.manual_seed(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype) model = model.cuda() utils.load(model, args.model_path) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() _, test_transform = utils._data_transforms_cifar10(args) test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform) test_queue = torch.utils.data.DataLoader( test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2) model.drop_path_prob = args.drop_path_prob with torch.no_grad(): test_acc, test_obj = infer(test_queue, model, criterion) logging.info('test_acc %f', test_acc)
Example #8
Source File: test_imagenet.py From sgas with MIT License | 5 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) cudnn.enabled=True logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CLASSES, args.layers, args.auxiliary, genotype) model = nn.DataParallel(model) model = model.cuda() model.load_state_dict(torch.load(args.model_path)['state_dict']) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() validdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) valid_data = dset.ImageFolder( validdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=False, num_workers=4) model.module.drop_path_prob = 0.0 valid_acc_top1, valid_acc_top5, valid_obj = infer(valid_queue, model, criterion) logging.info('Valid_acc_top1 %f', valid_acc_top1) logging.info('Valid_acc_top5 %f', valid_acc_top5)
Example #9
Source File: test.py From eval-nas with MIT License | 5 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = True torch.manual_seed(args.seed) cudnn.enabled=True torch.cuda.manual_seed(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype) model = model.cuda() utils.load(model, args.model_path) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() _, test_transform = utils._data_transforms_cifar10(args) test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform) test_queue = torch.utils.data.DataLoader( test_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2) model.drop_path_prob = args.drop_path_prob test_acc, test_obj = infer(test_queue, model, criterion) logging.info('test_acc %f', test_acc)
Example #10
Source File: train_search.py From NAO_pytorch with GNU General Public License v3.0 | 5 votes |
def build_cifar10(model_state_dict=None, optimizer_state_dict=None, **kwargs): epoch = kwargs.pop('epoch') ratio = kwargs.pop('ratio') train_transform, valid_transform = utils._data_transforms_cifar10(args.child_cutout_size) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=valid_transform) num_train = len(train_data) assert num_train == len(valid_data) indices = list(range(num_train)) split = int(np.floor(ratio * num_train)) np.random.shuffle(indices) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.child_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.child_eval_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True, num_workers=16) model = NASWSNetworkCIFAR(args, 10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) optimizer = torch.optim.SGD( model.parameters(), args.child_lr_max, momentum=0.9, weight_decay=args.child_l2_reg, ) if model_state_dict is not None: model.load_state_dict(model_state_dict) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #11
Source File: itn.py From landmark-detection with MIT License | 5 votes |
def num_parameters(self): params = count_parameters_in_MB(self.netG_A) params+= count_parameters_in_MB(self.netG_B) params+= count_parameters_in_MB(self.netD_B) params+= count_parameters_in_MB(self.netD_B) return params
Example #12
Source File: train_cifar.py From NAO_pytorch with GNU General Public License v3.0 | 5 votes |
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs): epoch = kwargs.pop('epoch') train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16) model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob, args.use_aux_head, args.steps, args.arch) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) if model_state_dict is not None: model.load_state_dict(model_state_dict) if torch.cuda.device_count() > 1: logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !") model = nn.DataParallel(model) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD( model.parameters(), args.lr_max, momentum=0.9, weight_decay=args.l2_reg, ) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #13
Source File: test_cifar.py From NAO_pytorch with GNU General Public License v3.0 | 5 votes |
def build_cifar100(model_state_dict, optimizer_state_dict, **kwargs): epoch = kwargs.pop('epoch') train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size) train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16) model = NASNetworkCIFAR(args, 100, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob, args.use_aux_head, args.steps, args.arch) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) logging.info("multi adds = %fM", model.multi_adds / 1000000) if model_state_dict is not None: model.load_state_dict(model_state_dict) if torch.cuda.device_count() > 1: logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !") model = nn.DataParallel(model) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD( model.parameters(), args.lr_max, momentum=0.9, weight_decay=args.l2_reg, ) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #14
Source File: test_cifar.py From NAO_pytorch with GNU General Public License v3.0 | 5 votes |
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs): epoch = kwargs.pop('epoch') train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16) model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob, args.use_aux_head, args.steps, args.arch) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) logging.info("multi adds = %fM", model.multi_adds / 1000000) if model_state_dict is not None: model.load_state_dict(model_state_dict) if torch.cuda.device_count() > 1: logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !") model = nn.DataParallel(model) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD( model.parameters(), args.lr_max, momentum=0.9, weight_decay=args.l2_reg, ) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #15
Source File: train_search.py From NAO_pytorch with GNU General Public License v3.0 | 5 votes |
def build_cifar100(model_state_dict=None, optimizer_state_dict=None, **kwargs): epoch = kwargs.pop('epoch') ratio = kwargs.pop('ratio') train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size) train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=valid_transform) num_train = len(train_data) assert num_train == len(valid_data) indices = list(range(num_train)) split = int(np.floor(ratio * num_train)) np.random.shuffle(indices) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.child_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.child_eval_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True, num_workers=16) model = NASWSNetworkCIFAR(100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) optimizer = torch.optim.SGD( model.parameters(), args.child_lr_max, momentum=0.9, weight_decay=args.child_l2_reg, ) if model_state_dict is not None: model.load_state_dict(model_state_dict) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #16
Source File: train_search.py From NAO_pytorch with GNU General Public License v3.0 | 5 votes |
def build_cifar10(model_state_dict=None, optimizer_state_dict=None, **kwargs): epoch = kwargs.pop('epoch') ratio = kwargs.pop('ratio') train_transform, valid_transform = utils._data_transforms_cifar10(args.child_cutout_size) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=valid_transform) num_train = len(train_data) assert num_train == len(valid_data) indices = list(range(num_train)) split = int(np.floor(ratio * num_train)) np.random.shuffle(indices) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.child_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.child_eval_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True, num_workers=16) model = NASWSNetworkCIFAR(10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) optimizer = torch.optim.SGD( model.parameters(), args.child_lr_max, momentum=0.9, weight_decay=args.child_l2_reg, ) if model_state_dict is not None: model.load_state_dict(model_state_dict) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #17
Source File: train_cifar.py From NAO_pytorch with GNU General Public License v3.0 | 5 votes |
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs): epoch = kwargs.pop('epoch') train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size, args.autoaugment) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16) model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob, args.use_aux_head, args.steps, args.arch) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) if model_state_dict is not None: model.load_state_dict(model_state_dict) if torch.cuda.device_count() > 1: logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !") model = nn.DataParallel(model) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD( model.parameters(), args.lr_max, momentum=0.9, weight_decay=args.l2_reg, ) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #18
Source File: test_cifar.py From NAO_pytorch with GNU General Public License v3.0 | 5 votes |
def build_cifar100(model_state_dict, optimizer_state_dict, **kwargs): epoch = kwargs.pop('epoch') train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size) train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16) model = NASNetworkCIFAR(args, 100, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob, args.use_aux_head, args.steps, args.arch) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) logging.info("multi adds = %fM", model.multi_adds / 1000000) if model_state_dict is not None: model.load_state_dict(model_state_dict) if torch.cuda.device_count() > 1: logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !") model = nn.DataParallel(model) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD( model.parameters(), args.lr_max, momentum=0.9, weight_decay=args.l2_reg, ) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #19
Source File: test_cifar.py From NAO_pytorch with GNU General Public License v3.0 | 5 votes |
def build_cifar10(model_state_dict, optimizer_state_dict, **kwargs): epoch = kwargs.pop('epoch') train_transform, valid_transform = utils._data_transforms_cifar10(args.cutout_size) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.eval_batch_size, shuffle=False, pin_memory=True, num_workers=16) model = NASNetworkCIFAR(args, 10, args.layers, args.nodes, args.channels, args.keep_prob, args.drop_path_keep_prob, args.use_aux_head, args.steps, args.arch) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) logging.info("multi adds = %fM", model.multi_adds / 1000000) if model_state_dict is not None: model.load_state_dict(model_state_dict) if torch.cuda.device_count() > 1: logging.info("Use %d %s", torch.cuda.device_count(), "GPUs !") model = nn.DataParallel(model) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() optimizer = torch.optim.SGD( model.parameters(), args.lr_max, momentum=0.9, weight_decay=args.l2_reg, ) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs), args.lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #20
Source File: test_imagenet.py From NAS-Benchmark with GNU General Public License v3.0 | 4 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = True torch.manual_seed(args.seed) cudnn.enabled=True torch.cuda.manual_seed(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CLASSES, args.layers, args.auxiliary, genotype) model = model.cuda() model.load_state_dict(torch.load(args.model_path)['state_dict']) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() validdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) valid_data = dset.ImageFolder( validdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=4) model.drop_path_prob = args.drop_path_prob valid_acc_top1, valid_acc_top5, valid_obj = infer(valid_queue, model, criterion) logging.info('valid_acc_top1 %f', valid_acc_top1) logging.info('valid_acc_top5 %f', valid_acc_top5)
Example #21
Source File: train.py From sgas with MIT License | 4 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = True torch.manual_seed(args.seed) cudnn.enabled=True torch.cuda.manual_seed(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype) model = model.cuda() logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() optimizer = torch.optim.SGD( model.parameters(), args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay ) train_transform, valid_transform = utils._data_transforms_cifar10(args) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=2) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs)) best_val_acc = 0. for epoch in range(args.epochs): scheduler.step() logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0]) model.drop_path_prob = args.drop_path_prob * epoch / args.epochs train_acc, train_obj = train(train_queue, model, criterion, optimizer) logging.info('train_acc %f', train_acc) with torch.no_grad(): valid_acc, valid_obj = infer(valid_queue, model, criterion) if valid_acc > best_val_acc: best_val_acc = valid_acc utils.save(model, os.path.join(args.save, 'best_weights.pt')) logging.info('valid_acc %f\tbest_val_acc %f', valid_acc, best_val_acc) utils.save(model, os.path.join(args.save, 'weights.pt'))
Example #22
Source File: train_search.py From NAS-Benchmark with GNU General Public License v3.0 | 4 votes |
def build_cifar100(model_state_dict=None, optimizer_state_dict=None, **kwargs): epoch = kwargs.pop('epoch') ratio = kwargs.pop('ratio') train_transform, valid_transform = utils._data_transforms_cifar10(args.child_cutout_size) train_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR100(root=args.data, train=True, download=True, transform=valid_transform) num_train = len(train_data) assert num_train == len(valid_data) indices = list(range(num_train)) split = int(np.floor(ratio * num_train)) np.random.shuffle(indices) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.child_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.child_eval_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True, num_workers=16) model = NASWSNetworkCIFAR(100, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) optimizer = torch.optim.SGD( model.parameters(), args.child_lr_max, momentum=0.9, weight_decay=args.child_l2_reg, ) if model_state_dict is not None: model.load_state_dict(model_state_dict) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #23
Source File: train_search.py From NAS-Benchmark with GNU General Public License v3.0 | 4 votes |
def build_cifar10(model_state_dict=None, optimizer_state_dict=None, **kwargs): epoch = kwargs.pop('epoch') ratio = kwargs.pop('ratio') train_transform, valid_transform = utils._data_transforms_cifar10(args.child_cutout_size) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=valid_transform) num_train = len(train_data) assert num_train == len(valid_data) indices = list(range(num_train)) split = int(np.floor(ratio * num_train)) np.random.shuffle(indices) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.child_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.child_eval_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True, num_workers=16) model = NASWSNetworkCIFAR(10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) optimizer = torch.optim.SGD( model.parameters(), args.child_lr_max, momentum=0.9, weight_decay=args.child_l2_reg, ) if model_state_dict is not None: model.load_state_dict(model_state_dict) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #24
Source File: test.py From NAS-Benchmark with GNU General Public License v3.0 | 4 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) torch.cuda.set_device(args.gpu) cudnn.enabled=True logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) if args.dataset in LARGE_DATASETS: model = NetworkLarge(args.init_channels, CLASSES, args.layers, args.auxiliary, genotype) else: model = Network(args.init_channels, CLASSES, args.layers, args.auxiliary, genotype) model = model.cuda() utils.load(model, args.model_path) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() _, test_transform = utils.data_transforms(args.dataset,args.cutout,args.cutout_length) if args.dataset=="CIFAR100": test_data = dset.CIFAR100(root=args.data, train=False, download=True, transform=test_transform) elif args.dataset=="CIFAR10": test_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=test_transform) elif args.dataset=="sport8": dset_cls = dset.ImageFolder val_path = '%s/Sport8/test' %args.data test_data = dset_cls(root=val_path, transform=test_transform) elif args.dataset=="mit67": dset_cls = dset.ImageFolder val_path = '%s/MIT67/test' %args.data test_data = dset_cls(root=val_path, transform=test_transform) elif args.dataset == "flowers102": dset_cls = dset.ImageFolder val_path = '%s/flowers102/test' % args.tmp_data_dir test_data = dset_cls(root=val_path, transform=test_transform) test_queue = torch.utils.data.DataLoader( test_data, batch_size=args.batch_size, shuffle=False, pin_memory=False, num_workers=2) model.drop_path_prob = 0.0 test_acc, test_obj = infer(test_queue, model, criterion) logging.info('Test_acc %f', test_acc)
Example #25
Source File: train.py From darts with Apache License 2.0 | 4 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = True torch.manual_seed(args.seed) cudnn.enabled=True torch.cuda.manual_seed(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype) model = model.cuda() logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() optimizer = torch.optim.SGD( model.parameters(), args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay ) train_transform, valid_transform = utils._data_transforms_cifar10(args) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=2) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs)) for epoch in range(args.epochs): scheduler.step() logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0]) model.drop_path_prob = args.drop_path_prob * epoch / args.epochs train_acc, train_obj = train(train_queue, model, criterion, optimizer) logging.info('train_acc %f', train_acc) valid_acc, valid_obj = infer(valid_queue, model, criterion) logging.info('valid_acc %f', valid_acc) utils.save(model, os.path.join(args.save, 'weights.pt'))
Example #26
Source File: test_imagenet.py From darts with Apache License 2.0 | 4 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = True torch.manual_seed(args.seed) cudnn.enabled=True torch.cuda.manual_seed(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CLASSES, args.layers, args.auxiliary, genotype) model = model.cuda() model.load_state_dict(torch.load(args.model_path)['state_dict']) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() validdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) valid_data = dset.ImageFolder( validdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=4) model.drop_path_prob = args.drop_path_prob valid_acc_top1, valid_acc_top5, valid_obj = infer(valid_queue, model, criterion) logging.info('valid_acc_top1 %f', valid_acc_top1) logging.info('valid_acc_top5 %f', valid_acc_top5)
Example #27
Source File: train_search.py From eval-nas with MIT License | 4 votes |
def build_cifar10(model_state_dict=None, optimizer_state_dict=None, **kwargs): epoch = kwargs.pop('epoch') ratio = kwargs.pop('ratio') train_transform, valid_transform = utils._data_transforms_cifar10(args.child_cutout_size) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=valid_transform) num_train = len(train_data) assert num_train == len(valid_data) indices = list(range(num_train)) split = int(np.floor(ratio * num_train)) np.random.shuffle(indices) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.child_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]), pin_memory=True, num_workers=16) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.child_eval_batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train]), pin_memory=True, num_workers=16) model = NASWSNetworkCIFAR(10, args.child_layers, args.child_nodes, args.child_channels, args.child_keep_prob, args.child_drop_path_keep_prob, args.child_use_aux_head, args.steps) model = model.cuda() train_criterion = nn.CrossEntropyLoss().cuda() eval_criterion = nn.CrossEntropyLoss().cuda() logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) optimizer = torch.optim.SGD( model.parameters(), args.child_lr_max, momentum=0.9, weight_decay=args.child_l2_reg, ) if model_state_dict is not None: model.load_state_dict(model_state_dict) if optimizer_state_dict is not None: optimizer.load_state_dict(optimizer_state_dict) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.child_epochs, args.child_lr_min, epoch) return train_queue, valid_queue, model, train_criterion, eval_criterion, optimizer, scheduler
Example #28
Source File: train.py From eval-nas with MIT License | 4 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = True torch.manual_seed(args.seed) cudnn.enabled=True torch.cuda.manual_seed(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CIFAR_CLASSES, args.layers, args.auxiliary, genotype) model = model.cuda() logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() optimizer = torch.optim.SGD( model.parameters(), args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay ) train_transform, valid_transform = utils._data_transforms_cifar10(args) train_data = dset.CIFAR10(root=args.data, train=True, download=True, transform=train_transform) valid_data = dset.CIFAR10(root=args.data, train=False, download=True, transform=valid_transform) train_queue = torch.utils.data.DataLoader( train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=2) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=2) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs)) for epoch in range(args.epochs): scheduler.step() logging.info('epoch %d lr %e', epoch, scheduler.get_lr()[0]) model.drop_path_prob = args.drop_path_prob * epoch / args.epochs train_acc, train_obj = train(train_queue, model, criterion, optimizer) logging.info('train_acc %f', train_acc) valid_acc, valid_obj = infer(valid_queue, model, criterion) logging.info('valid_acc %f', valid_acc) utils.save(model, os.path.join(args.save, 'weights.pt'))
Example #29
Source File: test_imagenet.py From eval-nas with MIT License | 4 votes |
def main(): if not torch.cuda.is_available(): logging.info('no gpu device available') sys.exit(1) np.random.seed(args.seed) torch.cuda.set_device(args.gpu) cudnn.benchmark = True torch.manual_seed(args.seed) cudnn.enabled=True torch.cuda.manual_seed(args.seed) logging.info('gpu device = %d' % args.gpu) logging.info("args = %s", args) genotype = eval("genotypes.%s" % args.arch) model = Network(args.init_channels, CLASSES, args.layers, args.auxiliary, genotype) model = model.cuda() model.load_state_dict(torch.load(args.model_path)['state_dict']) logging.info("param size = %fMB", utils.count_parameters_in_MB(model)) criterion = nn.CrossEntropyLoss() criterion = criterion.cuda() validdir = os.path.join(args.data, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) valid_data = dset.ImageFolder( validdir, transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ])) valid_queue = torch.utils.data.DataLoader( valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=4) model.drop_path_prob = args.drop_path_prob valid_acc_top1, valid_acc_top5, valid_obj = infer(valid_queue, model, criterion) logging.info('valid_acc_top1 %f', valid_acc_top1) logging.info('valid_acc_top5 %f', valid_acc_top5)
Example #30
Source File: enas_search_policy.py From eval-nas with MIT License | 4 votes |
def initialize_model(self): """ Initialize model, may change across different model. :return: """ args = self.args # over ride the model_fn self.train_fn = None self.eval_fn = nao_model_validation_nasbench if self.args.search_space == 'nasbench': self.model_fn = NasBenchNetSearchENAS self.fixmodel_fn = NasBenchNet model = self.model_fn(args) utils = enas_nasbench_utils enas = MicroControllerNasbench(args=args) else: utils = enas_utils self.model_fn = ENASWSCNN self.fixmodel_fn = None model = self.model_fn(args) enas = MicroController(args) enas = enas.cuda() logging.info("ENAS RNN sampler param size = %fMB", project_utils.count_parameters_in_MB(enas)) self.controller = enas if args.gpus > 0: if self.args.gpus == 1: model = model.cuda() self.parallel_model = model else: self.model = model self.parallel_model = nn.DataParallel(self.model).cuda() # IPython.embed(header='checking replicas and others.') else: self.parallel_model = model # rewrite the pointer model = self.parallel_model logging.info("param size = %fMB", project_utils.count_parameters_in_MB(model)) optimizer = torch.optim.SGD( model.parameters(), args.child_lr_max, momentum=0.9, weight_decay=args.child_l2_reg, ) controller_optimizer = torch.optim.Adam( enas.parameters(), args.controller_lr, betas=(0.1, 0.999), eps=1e-3, ) # scheduler as Cosine. scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, args.child_lr_min) return model, optimizer, scheduler, enas, controller_optimizer