Python utils.load_config() Examples
The following are 30
code examples of utils.load_config().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: transfer.py From taskonomy with MIT License | 6 votes |
def main( _ ): args = parser.parse_args() # TODO(apply proposed change) # shim to reboot if the transport end point is disconnected # We will remove this in the next experiment and add it as a background process launched from user data # subprocess.call( # "watch -n 300 'bash /home/ubuntu/task-taxonomy-331b/tools/script/reboot_if_disconnected.sh' &>/dev/null &", # shell=True # ) print(args) # Get available GPUs local_device_protos = utils.get_available_devices() print( 'Found devices:', [ x.name for x in local_device_protos ] ) # set gpu if args.gpu_id is not None: print( 'using gpu %d' % args.gpu_id ) os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id ) else: print( 'no gpu specified' ) # load config and run training cfg = utils.load_config( args.cfg_dir, nopause=args.nopause ) # cfg['num_read_threads'] = 1 run_training( cfg, args.cfg_dir )
Example #2
Source File: val_test.py From taskonomy with MIT License | 6 votes |
def main( _ ): args = parser.parse_args() print(args) # Get available GPUs local_device_protos = utils.get_available_devices() print( 'Found devices:', [ x.name for x in local_device_protos ] ) # set gpu if args.gpu_id is not None: print( 'using gpu %d' % args.gpu_id ) os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id ) else: print( 'no gpu specified' ) # load config and run training cfg = utils.load_config( args.cfg_dir, nopause=args.nopause ) cfg['task_name'] = args.cfg_dir.split('/')[-1] cfg['task_name'] = 'class_selected' cfg['num_epochs'] = 1 run_val_test( cfg )
Example #3
Source File: rand_baseline.py From taskonomy with MIT License | 6 votes |
def main( _ ): args = parser.parse_args() #task_list = ["autoencoder", "colorization","curvature", "denoise", "edge2d", "edge3d", "ego_motion", "fix_pose", "impainting", "jigsaw", "keypoint2d", "keypoint3d", "non_fixated_pose", "point_match", "reshade", "rgb2depth", "rgb2mist", "rgb2sfnorm", "room_layout", "segment25d", "segment2d", "vanishing_point"] #single channel for colorization !!!!!!!!!!!!!!!!!!!!!!!!! COME BACK TO THIS !!!!!!!!!!!!!!!!!!!!!!!!!!! #task_list = [ "point_match"] task_list = [ "vanishing_point"] # Get available GPUs local_device_protos = utils.get_available_devices() print( 'Found devices:', [ x.name for x in local_device_protos ] ) # set GPU id if args.gpu_id: print( 'using gpu %d' % args.gpu_id ) os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id ) else: print( 'no gpu specified' ) for task in task_list: task_dir = os.path.join(args.cfg_dir, task) cfg = utils.load_config( task_dir, nopause=args.nopause ) root_dir = cfg['root_dir'] cfg['randomize'] = False cfg['num_epochs'] = 1 run_rand_baseline( args, cfg, task )
Example #4
Source File: main.py From PIXOR with MIT License | 6 votes |
def test(exp_name, device, image_id): config, _, _, _ = load_config(exp_name) net, loss_fn = build_model(config, device, train=False) net.load_state_dict(torch.load(get_model_name(config), map_location=device)) net.set_decode(True) train_loader, val_loader = get_data_loader(1, config['use_npy'], geometry=config['geometry'], frame_range=config['frame_range']) net.eval() with torch.no_grad(): num_gt, num_pred, scores, pred_image, pred_match, loss, t_forward, t_nms = \ eval_one(net, loss_fn, config, train_loader, image_id, device, plot=True) TP = (pred_match != -1).sum() print("Loss: {:.4f}".format(loss)) print("Precision: {:.2f}".format(TP/num_pred)) print("Recall: {:.2f}".format(TP/num_gt)) print("forward pass time {:.3f}s".format(t_forward)) print("nms time {:.3f}s".format(t_nms))
Example #5
Source File: variable_stat.py From yolo2-pytorch with GNU Lesser General Public License v3.0 | 6 votes |
def main(): args = make_args() config = configparser.ConfigParser() utils.load_config(config, args.config) for cmd in args.modify: utils.modify_config(config, cmd) with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f: logging.config.dictConfig(yaml.load(f)) model_dir = utils.get_model_dir(config) path, step, epoch = utils.train.load_model(model_dir) state_dict = torch.load(path, map_location=lambda storage, loc: storage) mapper = [(inflection.underscore(name), member()) for name, member in inspect.getmembers(importlib.machinery.SourceFileLoader('', __file__).load_module()) if inspect.isclass(member)] path = os.path.join(model_dir, os.path.basename(os.path.splitext(__file__)[0])) + '.xlsx' with xlsxwriter.Workbook(path, {'strings_to_urls': False, 'nan_inf_to_errors': True}) as workbook: worksheet = workbook.add_worksheet(args.worksheet) for j, (key, m) in enumerate(mapper): worksheet.write(0, j, key) for i, (name, variable) in enumerate(state_dict.items()): value = m(name, variable) worksheet.write(1 + i, j, value) if hasattr(m, 'format'): m.format(workbook, worksheet, i, j) worksheet.autofilter(0, 0, i, len(mapper) - 1) worksheet.freeze_panes(1, 0) logging.info(path)
Example #6
Source File: main.py From pynlp with MIT License | 6 votes |
def evaluate_line(): config = load_config(FLAGS.config_file) logger = get_logger(FLAGS.log_file) # limit GPU memory tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True with open(FLAGS.map_file, "rb") as f: char_to_id, id_to_char, tag_to_id, id_to_tag = pickle.load(f) with tf.Session(config=tf_config) as sess: model = create_model(sess, Model, FLAGS.ckpt_path, load_word2vec, config, id_to_char, logger, False) while True: # try: # line = input("请输入测试句子:") # result = ckpt.evaluate_line(sess, input_from_line(line, char_to_id), id_to_tag) # print(result) # except Exception as e: # logger.info(e) line = input("请输入测试句子:") result = model.evaluate_line(sess, input_from_line(line, char_to_id), id_to_tag) print(result)
Example #7
Source File: train.py From taskonomy with MIT License | 6 votes |
def main( _ ): args = parser.parse_args() print(args) # Get available GPUs local_device_protos = utils.get_available_devices() print( 'Found devices:', [ x.name for x in local_device_protos ] ) # set gpu if args.gpu_id is not None: print( 'using gpu %d' % args.gpu_id ) os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id ) else: print( 'no gpu specified' ) # load config and run training cfg = utils.load_config( args.cfg_dir, nopause=args.nopause ) run_training( cfg, args.cfg_dir )
Example #8
Source File: chained_transfer.py From taskonomy with MIT License | 6 votes |
def main( _ ): args = parser.parse_args() print(args) # Get available GPUs local_device_protos = utils.get_available_devices() print( 'Found devices:', [ x.name for x in local_device_protos ] ) # set gpu if args.gpu_id is not None: print( 'using gpu %d' % args.gpu_id ) os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id ) else: print( 'no gpu specified' ) # load config and run training cfg = utils.load_config( args.cfg_dir, nopause=args.nopause ) # cfg['num_read_threads'] = 1 run_training( cfg, args.cfg_dir )
Example #9
Source File: train_3m.py From taskonomy with MIT License | 6 votes |
def main( _ ): args = parser.parse_args() print(args) # Get available GPUs local_device_protos = utils.get_available_devices() print( 'Found devices:', [ x.name for x in local_device_protos ] ) # set gpu if args.gpu_id is not None: print( 'using gpu %d' % args.gpu_id ) os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id ) else: print( 'no gpu specified' ) # load config and run training cfg = utils.load_config( args.cfg_dir, nopause=args.nopause ) cfg['train_filenames'] = cfg['train_filenames'].replace('task-taxonomy-331b/assets/aws_data', 's3/meta') cfg['num_epochs'] = 6 cfg['learning_rate_schedule_kwargs' ] = { 'boundaries': [np.int64(0), np.int64(1800000)], # need to be int64 since global step is... 'values': [cfg['initial_learning_rate'], cfg['initial_learning_rate']/10] } cfg['randomize'] = True run_training( cfg, args.cfg_dir )
Example #10
Source File: run_img_task.py From taskonomy with MIT License | 5 votes |
def generate_cfg(task): repo_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) CONFIG_DIR = os.path.join(repo_dir, 'experiments/final', task) ############## Load Configs ############## import utils import data.load_ops as load_ops from general_utils import RuntimeDeterminedEnviromentVars cfg = utils.load_config( CONFIG_DIR, nopause=True ) RuntimeDeterminedEnviromentVars.register_dict( cfg ) cfg['batch_size'] = 1 if 'batch_size' in cfg['encoder_kwargs']: cfg['encoder_kwargs']['batch_size'] = 1 cfg['model_path'] = os.path.join( repo_dir, 'temp', task, 'model.permanent-ckpt' ) cfg['root_dir'] = repo_dir return cfg
Example #11
Source File: test_backbones.py From maskrcnn-benchmark with MIT License | 5 votes |
def test_build_backbones(self): ''' Make sure backbones run ''' self.assertGreater(len(registry.BACKBONES), 0) for name, backbone_builder in registry.BACKBONES.items(): print('Testing {}...'.format(name)) if name in BACKBONE_CFGS: cfg = load_config(BACKBONE_CFGS[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) backbone = backbone_builder(cfg) # make sures the backbone has `out_channels` self.assertIsNotNone( getattr(backbone, 'out_channels', None), 'Need to provide out_channels for backbone {}'.format(name) ) N, C_in, H, W = 2, 3, 224, 256 input = torch.rand([N, C_in, H, W], dtype=torch.float32) out = backbone(input) for cur_out in out: self.assertEqual( cur_out.shape[:2], torch.Size([N, backbone.out_channels]) )
Example #12
Source File: test_rpn_heads.py From EmbedMask with MIT License | 5 votes |
def test_build_rpn_heads(self): ''' Make sure rpn heads run ''' self.assertGreater(len(registry.RPN_HEADS), 0) in_channels = 64 num_anchors = 10 for name, builder in registry.RPN_HEADS.items(): print('Testing {}...'.format(name)) if name in RPN_CFGS: cfg = load_config(RPN_CFGS[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) rpn = builder(cfg, in_channels, num_anchors) N, C_in, H, W = 2, in_channels, 24, 32 input = torch.rand([N, C_in, H, W], dtype=torch.float32) LAYERS = 3 out = rpn([input] * LAYERS) self.assertEqual(len(out), 2) logits, bbox_reg = out for idx in range(LAYERS): self.assertEqual( logits[idx].shape, torch.Size([ input.shape[0], num_anchors, input.shape[2], input.shape[3], ]) ) self.assertEqual( bbox_reg[idx].shape, torch.Size([ logits[idx].shape[0], num_anchors * 4, logits[idx].shape[2], logits[idx].shape[3], ]), )
Example #13
Source File: test_feature_extractors.py From EmbedMask with MIT License | 5 votes |
def _test_feature_extractors( self, extractors, overwrite_cfgs, overwrite_in_channels ): ''' Make sure roi box feature extractors run ''' self.assertGreater(len(extractors), 0) in_channels_default = 64 for name, builder in extractors.items(): print('Testing {}...'.format(name)) if name in overwrite_cfgs: cfg = load_config(overwrite_cfgs[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) in_channels = overwrite_in_channels.get( name, in_channels_default) fe = builder(cfg, in_channels) self.assertIsNotNone( getattr(fe, 'out_channels', None), 'Need to provide out_channels for feature extractor {}'.format(name) ) N, C_in, H, W = 2, in_channels, 24, 32 input = torch.rand([N, C_in, H, W], dtype=torch.float32) bboxes = [[1, 1, 10, 10], [5, 5, 8, 8], [2, 2, 3, 4]] img_size = [384, 512] box_list = BoxList(bboxes, img_size, "xyxy") out = fe([input], [box_list] * N) self.assertEqual( out.shape[:2], torch.Size([N * len(bboxes), fe.out_channels]) )
Example #14
Source File: test_backbones.py From EmbedMask with MIT License | 5 votes |
def test_build_backbones(self): ''' Make sure backbones run ''' self.assertGreater(len(registry.BACKBONES), 0) for name, backbone_builder in registry.BACKBONES.items(): print('Testing {}...'.format(name)) if name in BACKBONE_CFGS: cfg = load_config(BACKBONE_CFGS[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) backbone = backbone_builder(cfg) # make sures the backbone has `out_channels` self.assertIsNotNone( getattr(backbone, 'out_channels', None), 'Need to provide out_channels for backbone {}'.format(name) ) N, C_in, H, W = 2, 3, 224, 256 input = torch.rand([N, C_in, H, W], dtype=torch.float32) out = backbone(input) for cur_out in out: self.assertEqual( cur_out.shape[:2], torch.Size([N, backbone.out_channels]) )
Example #15
Source File: test_predictors.py From EmbedMask with MIT License | 5 votes |
def _test_predictors( self, predictors, overwrite_cfgs, overwrite_in_channels, hwsize, ): ''' Make sure predictors run ''' self.assertGreater(len(predictors), 0) in_channels_default = 64 for name, builder in predictors.items(): print('Testing {}...'.format(name)) if name in overwrite_cfgs: cfg = load_config(overwrite_cfgs[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) in_channels = overwrite_in_channels.get( name, in_channels_default) fe = builder(cfg, in_channels) N, C_in, H, W = 2, in_channels, hwsize, hwsize input = torch.rand([N, C_in, H, W], dtype=torch.float32) out = fe(input) yield input, out, cfg
Example #16
Source File: test_rpn_heads.py From maskrcnn-benchmark with MIT License | 5 votes |
def test_build_rpn_heads(self): ''' Make sure rpn heads run ''' self.assertGreater(len(registry.RPN_HEADS), 0) in_channels = 64 num_anchors = 10 for name, builder in registry.RPN_HEADS.items(): print('Testing {}...'.format(name)) if name in RPN_CFGS: cfg = load_config(RPN_CFGS[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) rpn = builder(cfg, in_channels, num_anchors) N, C_in, H, W = 2, in_channels, 24, 32 input = torch.rand([N, C_in, H, W], dtype=torch.float32) LAYERS = 3 out = rpn([input] * LAYERS) self.assertEqual(len(out), 2) logits, bbox_reg = out for idx in range(LAYERS): self.assertEqual( logits[idx].shape, torch.Size([ input.shape[0], num_anchors, input.shape[2], input.shape[3], ]) ) self.assertEqual( bbox_reg[idx].shape, torch.Size([ logits[idx].shape[0], num_anchors * 4, logits[idx].shape[2], logits[idx].shape[3], ]), )
Example #17
Source File: test_feature_extractors.py From maskrcnn-benchmark with MIT License | 5 votes |
def _test_feature_extractors( self, extractors, overwrite_cfgs, overwrite_in_channels ): ''' Make sure roi box feature extractors run ''' self.assertGreater(len(extractors), 0) in_channels_default = 64 for name, builder in extractors.items(): print('Testing {}...'.format(name)) if name in overwrite_cfgs: cfg = load_config(overwrite_cfgs[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) in_channels = overwrite_in_channels.get( name, in_channels_default) fe = builder(cfg, in_channels) self.assertIsNotNone( getattr(fe, 'out_channels', None), 'Need to provide out_channels for feature extractor {}'.format(name) ) N, C_in, H, W = 2, in_channels, 24, 32 input = torch.rand([N, C_in, H, W], dtype=torch.float32) bboxes = [[1, 1, 10, 10], [5, 5, 8, 8], [2, 2, 3, 4]] img_size = [384, 512] box_list = BoxList(bboxes, img_size, "xyxy") out = fe([input], [box_list] * N) self.assertEqual( out.shape[:2], torch.Size([N * len(bboxes), fe.out_channels]) )
Example #18
Source File: test_rpn_heads.py From sampling-free with MIT License | 5 votes |
def test_build_rpn_heads(self): ''' Make sure rpn heads run ''' self.assertGreater(len(registry.RPN_HEADS), 0) in_channels = 64 num_anchors = 10 for name, builder in registry.RPN_HEADS.items(): print('Testing {}...'.format(name)) if name in RPN_CFGS: cfg = load_config(RPN_CFGS[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) rpn = builder(cfg, in_channels, num_anchors) N, C_in, H, W = 2, in_channels, 24, 32 input = torch.rand([N, C_in, H, W], dtype=torch.float32) LAYERS = 3 out = rpn([input] * LAYERS) self.assertEqual(len(out), 2) logits, bbox_reg = out for idx in range(LAYERS): self.assertEqual( logits[idx].shape, torch.Size([ input.shape[0], num_anchors, input.shape[2], input.shape[3], ]) ) self.assertEqual( bbox_reg[idx].shape, torch.Size([ logits[idx].shape[0], num_anchors * 4, logits[idx].shape[2], logits[idx].shape[3], ]), )
Example #19
Source File: run_multi_img_task.py From taskonomy with MIT License | 5 votes |
def generate_cfg(task): repo_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) CONFIG_DIR = os.path.join(repo_dir, 'experiments/final', task) ############## Load Configs ############## import utils import data.load_ops as load_ops from general_utils import RuntimeDeterminedEnviromentVars cfg = utils.load_config( CONFIG_DIR, nopause=True ) RuntimeDeterminedEnviromentVars.register_dict( cfg ) cfg['batch_size'] = 1 if 'batch_size' in cfg['encoder_kwargs']: cfg['encoder_kwargs']['batch_size'] = 1 cfg['model_path'] = os.path.join( repo_dir, 'temp', task, 'model.permanent-ckpt' ) cfg['root_dir'] = repo_dir return cfg
Example #20
Source File: run_img_task.py From taskonomy with MIT License | 5 votes |
def generate_cfg(task): CONFIG_DIR = '/home/ubuntu/task-taxonomy-331b/experiments/final/{}'.format(task) ############## Load Configs ############## import utils import data.load_ops as load_ops from general_utils import RuntimeDeterminedEnviromentVars cfg = utils.load_config( CONFIG_DIR, nopause=True ) RuntimeDeterminedEnviromentVars.register_dict( cfg ) root_dir = cfg['root_dir'] cfg['batch_size'] = 1 if 'batch_size' in cfg['encoder_kwargs']: cfg['encoder_kwargs']['batch_size'] = 1 cfg['model_path'] = os.path.join( '/home/ubuntu/temp', task, 'model.permanent-ckpt' ) return cfg
Example #21
Source File: encode_inputs.py From taskonomy with MIT License | 5 votes |
def main( _ ): args = parser.parse_args() # Get available GPUs local_device_protos = utils.get_available_devices() print( 'Found devices:', [ x.name for x in local_device_protos ] ) # set GPU id if args.gpu_id: print( 'using gpu %d' % args.gpu_id ) os.environ[ 'CUDA_VISIBLE_DEVICES' ] = str( args.gpu_id ) else: print( 'no gpu specified' ) cfg = utils.load_config( args.cfg_dir, nopause=args.nopause ) run_extract_representations( args, cfg )
Example #22
Source File: knowledge_distill_imagenet.py From taskonomy with MIT License | 5 votes |
def main( _ ): args = parser.parse_args() # Get available GPUs local_device_protos = utils.get_available_devices() print( 'Found devices:', [ x.name for x in local_device_protos ] ) # set GPU id task_dir = os.path.join('/home/ubuntu/task-taxonomy-331b/experiments', 'class_gt') cfg = utils.load_config( task_dir, nopause=args.nopause ) dataset_dir = '/home/ubuntu/s3/meta' train = np.load(os.path.join(dataset_dir, 'train_image_split_0.npy')) val = np.load(os.path.join(dataset_dir, 'val_image_split_0.npy')) total = np.concatenate((train, val)) import math num_split = 200. unit_size = math.ceil(len(total) / num_split) total = total[args.idx * unit_size: (args.idx + 1) * unit_size] # split_file = '/home/ubuntu/this_split.npy' # with open(split_file, 'wb') as fp: # np.save(fp, total) # cfg['preprocess_fn'] = load_and_specify_preprocessors_for_representation_extraction # cfg['train_filenames'] = split_file # cfg['val_filenames'] = split_file # cfg['test_filenames'] = split_file cfg['randomize'] = False cfg['num_epochs'] = 2 cfg['num_read_threads'] = 1 run_extract_representations( args, cfg, total)
Example #23
Source File: test_predictors.py From DF-Traffic-Sign-Identification with MIT License | 5 votes |
def _test_predictors( self, predictors, overwrite_cfgs, overwrite_in_channels, hwsize, ): ''' Make sure predictors run ''' self.assertGreater(len(predictors), 0) in_channels_default = 64 for name, builder in predictors.items(): print('Testing {}...'.format(name)) if name in overwrite_cfgs: cfg = load_config(overwrite_cfgs[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) in_channels = overwrite_in_channels.get( name, in_channels_default) fe = builder(cfg, in_channels) N, C_in, H, W = 2, in_channels, hwsize, hwsize input = torch.rand([N, C_in, H, W], dtype=torch.float32) out = fe(input) yield input, out, cfg
Example #24
Source File: test_backbones.py From DF-Traffic-Sign-Identification with MIT License | 5 votes |
def test_build_backbones(self): ''' Make sure backbones run ''' self.assertGreater(len(registry.BACKBONES), 0) for name, backbone_builder in registry.BACKBONES.items(): print('Testing {}...'.format(name)) if name in BACKBONE_CFGS: cfg = load_config(BACKBONE_CFGS[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) backbone = backbone_builder(cfg) # make sures the backbone has `out_channels` self.assertIsNotNone( getattr(backbone, 'out_channels', None), 'Need to provide out_channels for backbone {}'.format(name) ) N, C_in, H, W = 2, 3, 224, 256 input = torch.rand([N, C_in, H, W], dtype=torch.float32) out = backbone(input) for cur_out in out: self.assertEqual( cur_out.shape[:2], torch.Size([N, backbone.out_channels]) )
Example #25
Source File: test_feature_extractors.py From DF-Traffic-Sign-Identification with MIT License | 5 votes |
def _test_feature_extractors( self, extractors, overwrite_cfgs, overwrite_in_channels ): ''' Make sure roi box feature extractors run ''' self.assertGreater(len(extractors), 0) in_channels_default = 64 for name, builder in extractors.items(): print('Testing {}...'.format(name)) if name in overwrite_cfgs: cfg = load_config(overwrite_cfgs[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) in_channels = overwrite_in_channels.get( name, in_channels_default) fe = builder(cfg, in_channels) self.assertIsNotNone( getattr(fe, 'out_channels', None), 'Need to provide out_channels for feature extractor {}'.format(name) ) N, C_in, H, W = 2, in_channels, 24, 32 input = torch.rand([N, C_in, H, W], dtype=torch.float32) bboxes = [[1, 1, 10, 10], [5, 5, 8, 8], [2, 2, 3, 4]] img_size = [384, 512] box_list = BoxList(bboxes, img_size, "xyxy") out = fe([input], [box_list] * N) self.assertEqual( out.shape[:2], torch.Size([N * len(bboxes), fe.out_channels]) )
Example #26
Source File: test_rpn_heads.py From DF-Traffic-Sign-Identification with MIT License | 5 votes |
def test_build_rpn_heads(self): ''' Make sure rpn heads run ''' self.assertGreater(len(registry.RPN_HEADS), 0) in_channels = 64 num_anchors = 10 for name, builder in registry.RPN_HEADS.items(): print('Testing {}...'.format(name)) if name in RPN_CFGS: cfg = load_config(RPN_CFGS[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) rpn = builder(cfg, in_channels, num_anchors) N, C_in, H, W = 2, in_channels, 24, 32 input = torch.rand([N, C_in, H, W], dtype=torch.float32) LAYERS = 3 out = rpn([input] * LAYERS) self.assertEqual(len(out), 2) logits, bbox_reg = out for idx in range(LAYERS): self.assertEqual( logits[idx].shape, torch.Size([ input.shape[0], num_anchors, input.shape[2], input.shape[3], ]) ) self.assertEqual( bbox_reg[idx].shape, torch.Size([ logits[idx].shape[0], num_anchors * 4, logits[idx].shape[2], logits[idx].shape[3], ]), )
Example #27
Source File: convert_onnx_caffe2.py From openpose-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def main(): args = make_args() config = configparser.ConfigParser() utils.load_config(config, args.config) for cmd in args.modify: utils.modify_config(config, cmd) with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f: logging.config.dictConfig(yaml.load(f)) model_dir = utils.get_model_dir(config) model = onnx.load(model_dir + '.onnx') onnx.checker.check_model(model) init_net, predict_net = onnx_caffe2.backend.Caffe2Backend.onnx_graph_to_caffe2_net(model.graph, device='CPU') onnx_caffe2.helper.save_caffe2_net(init_net, os.path.join(model_dir, 'init_net.pb')) onnx_caffe2.helper.save_caffe2_net(predict_net, os.path.join(model_dir, 'predict_net.pb'), output_txt=True) logging.info(model_dir)
Example #28
Source File: cache.py From openpose-pytorch with GNU Lesser General Public License v3.0 | 5 votes |
def main(): args = make_args() config = configparser.ConfigParser() utils.load_config(config, args.config) for cmd in args.modify: utils.modify_config(config, cmd) with open(os.path.expanduser(os.path.expandvars(args.logging)), 'r') as f: logging.config.dictConfig(yaml.load(f)) cache_dir = utils.get_cache_dir(config) os.makedirs(cache_dir, exist_ok=True) mappers, _ = utils.get_dataset_mappers(config) for phase in args.phase: path = os.path.join(cache_dir, phase) + '.pkl' logging.info('save cache file: ' + path) data = [] for dataset in mappers: logging.info('load %s dataset' % dataset) module, func = dataset.rsplit('.', 1) module = importlib.import_module(module) func = getattr(module, func) data += func(config, path, mappers[dataset]) if config.getboolean('cache', 'shuffle'): random.shuffle(data) with open(path, 'wb') as f: pickle.dump(data, f) logging.info('%s data are saved into %s' % (str(args.phase), cache_dir))
Example #29
Source File: test_feature_extractors.py From R2CNN.pytorch with MIT License | 5 votes |
def _test_feature_extractors( self, extractors, overwrite_cfgs, overwrite_in_channels ): ''' Make sure roi box feature extractors run ''' self.assertGreater(len(extractors), 0) in_channels_default = 64 for name, builder in extractors.items(): print('Testing {}...'.format(name)) if name in overwrite_cfgs: cfg = load_config(overwrite_cfgs[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) in_channels = overwrite_in_channels.get( name, in_channels_default) fe = builder(cfg, in_channels) self.assertIsNotNone( getattr(fe, 'out_channels', None), 'Need to provide out_channels for feature extractor {}'.format(name) ) N, C_in, H, W = 2, in_channels, 24, 32 input = torch.rand([N, C_in, H, W], dtype=torch.float32) bboxes = [[1, 1, 10, 10], [5, 5, 8, 8], [2, 2, 3, 4]] img_size = [384, 512] box_list = BoxList(bboxes, img_size, "xyxy") out = fe([input], [box_list] * N) self.assertEqual( out.shape[:2], torch.Size([N * len(bboxes), fe.out_channels]) )
Example #30
Source File: test_backbones.py From Res2Net-maskrcnn with MIT License | 5 votes |
def test_build_backbones(self): ''' Make sure backbones run ''' self.assertGreater(len(registry.BACKBONES), 0) for name, backbone_builder in registry.BACKBONES.items(): print('Testing {}...'.format(name)) if name in BACKBONE_CFGS: cfg = load_config(BACKBONE_CFGS[name]) else: # Use default config if config file is not specified cfg = copy.deepcopy(g_cfg) backbone = backbone_builder(cfg) # make sures the backbone has `out_channels` self.assertIsNotNone( getattr(backbone, 'out_channels', None), 'Need to provide out_channels for backbone {}'.format(name) ) N, C_in, H, W = 2, 3, 224, 256 input = torch.rand([N, C_in, H, W], dtype=torch.float32) out = backbone(input) for cur_out in out: self.assertEqual( cur_out.shape[:2], torch.Size([N, backbone.out_channels]) )