Python utils.parse_args() Examples

The following are 10 code examples of utils.parse_args(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module utils , or try the search function .
Example #1
Source File: main.py    From MobileNet-V2 with Apache License 2.0 5 votes vote down vote up
def main():
    # Parse the JSON arguments
    config_args = parse_args()

    # Create the experiment directories
    _, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(
        config_args.experiment_dir)

    model = MobileNetV2(config_args)

    if config_args.cuda:
        model.cuda()
        cudnn.enabled = True
        cudnn.benchmark = True

    print("Loading Data...")
    data = CIFAR10Data(config_args)
    print("Data loaded successfully\n")

    trainer = Train(model, data.trainloader, data.testloader, config_args)

    if config_args.to_train:
        try:
            print("Training...")
            trainer.train()
            print("Training Finished\n")
        except KeyboardInterrupt:
            pass

    if config_args.to_test:
        print("Testing...")
        trainer.test(data.testloader)
        print("Testing Finished\n") 
Example #2
Source File: train.py    From InsightFace-PyTorch with Apache License 2.0 5 votes vote down vote up
def main():
    global args
    args = parse_args()
    train_net(args) 
Example #3
Source File: train.py    From CCF-BDCI2019-Multi-person-Face-Recognition-Competition-Baseline with MIT License 5 votes vote down vote up
def main():
    global args
    args = parse_args()
    train_net(args) 
Example #4
Source File: train.py    From InsightFace-v2 with Apache License 2.0 5 votes vote down vote up
def main():
    global args
    args = parse_args()
    train_net(args) 
Example #5
Source File: train.py    From Speech-Transformer with MIT License 5 votes vote down vote up
def main():
    global args
    args = parse_args()
    train_net(args) 
Example #6
Source File: stpn_main.py    From STPN with Apache License 2.0 5 votes vote down vote up
def main(_):
    # Parsing Arguments
    args = utils.parse_args()
    mode = args.mode
    train_iter = args.training_num
    test_iter = args.test_iter
    ckpt = utils.ckpt_path(args.ckpt)
    input_list = {
        'batch_size': args.batch_size,
        'beta': args.beta,
        'learning_rate': args.learning_rate,
        'ckpt': ckpt,
        'class_threshold': args.class_th,
        'scale': args.scale}

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True

    tf.reset_default_graph()
    model = StpnModel()

    # Run Model
    with tf.Session(config=config) as sess:
        init = tf.global_variables_initializer()
        if mode == 'train':
            sess.run(init)
            train(sess, model, input_list, 'rgb', train_iter)  # Train RGB stream
            sess.run(init)
            train(sess, model, input_list, 'flow', train_iter)  # Train FLOW stream

        elif mode == 'test':
            sess.run(init)
            test(sess, model, init, input_list, test_iter)  # Test 
Example #7
Source File: train.py    From Tacotron2-Mandarin with MIT License 5 votes vote down vote up
def main():
    global args
    args = parse_args()
    train_net(args) 
Example #8
Source File: main.py    From MobileNet with Apache License 2.0 4 votes vote down vote up
def main():
    # Parse the JSON arguments
    try:
        config_args = parse_args()
    except:
        print("Add a config file using \'--config file_name.json\'")
        exit(1)

    # Create the experiment directories
    _, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(config_args.experiment_dir)

    # Reset the default Tensorflow graph
    tf.reset_default_graph()

    # Tensorflow specific configuration
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    # Data loading
    data = DataLoader(config_args.batch_size, config_args.shuffle)
    print("Loading Data...")
    config_args.img_height, config_args.img_width, config_args.num_channels, \
    config_args.train_data_size, config_args.test_data_size = data.load_data()
    print("Data loaded\n\n")

    # Model creation
    print("Building the model...")
    model = MobileNet(config_args)
    print("Model is built successfully\n\n")

    # Summarizer creation
    summarizer = Summarizer(sess, config_args.summary_dir)
    # Train class
    trainer = Train(sess, model, data, summarizer)

    if config_args.to_train:
        try:
            print("Training...")
            trainer.train()
            print("Training Finished\n\n")
        except KeyboardInterrupt:
            trainer.save_model()

    if config_args.to_test:
        print("Final test!")
        trainer.test('val')
        print("Testing Finished\n\n") 
Example #9
Source File: main.py    From face-antispoofing-using-mobileNet with Apache License 2.0 4 votes vote down vote up
def main():
    # Parse the JSON arguments
    try:
        config_args = parse_args()
    except:
        print("Add a config file using \'--config file_name.json\'")
        exit(1)

    # Create the experiment directories
    _, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(config_args.experiment_dir)

    # Reset the default Tensorflow graph
    tf.reset_default_graph()

    # Tensorflow specific configuration
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    # Data loading
    data = DataLoader(config_args.batch_size, config_args.shuffle)
    print("Loading Data...")
    config_args.img_height, config_args.img_width, config_args.num_channels, \
    config_args.train_data_size, config_args.test_data_size = data.load_data()
    print("Data loaded\n\n")

    # Model creation
    print("Building the model...")
    model = MobileNet(config_args)
    print("Model is built successfully\n\n")

    # Summarizer creation
    summarizer = Summarizer(sess, config_args.summary_dir)
    # Train class
    trainer = Train(sess, model, data, summarizer)

    if config_args.to_train:
        try:
            print("Training...")
            trainer.train()
            print("Training Finished\n\n")
        except KeyboardInterrupt:
            trainer.save_model()

    if config_args.to_test:
        print("Final test!")
        trainer.test('val')
        print("Testing Finished\n\n") 
Example #10
Source File: main.py    From ShuffleNet with Apache License 2.0 4 votes vote down vote up
def main():
    # Parse the JSON arguments
    config_args = parse_args()

    # Create the experiment directories
    _, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(config_args.experiment_dir)

    # Reset the default Tensorflow graph
    tf.reset_default_graph()

    # Tensorflow specific configuration
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    # Data loading
    # The batch size is equal to 1 when testing to simulate the real experiment.
    data_batch_size = config_args.batch_size if config_args.train_or_test == "train" else 1
    data = DataLoader(data_batch_size, config_args.shuffle)
    print("Loading Data...")
    config_args.img_height, config_args.img_width, config_args.num_channels, \
    config_args.train_data_size, config_args.test_data_size = data.load_data()
    print("Data loaded\n\n")

    # Model creation
    print("Building the model...")
    model = ShuffleNet(config_args)
    print("Model is built successfully\n\n")

    # Parameters visualization
    show_parameters()

    # Summarizer creation
    summarizer = Summarizer(sess, config_args.summary_dir)
    # Train class
    trainer = Train(sess, model, data, summarizer)

    if config_args.train_or_test == 'train':
        try:
            # print("FLOPs for batch size = " + str(config_args.batch_size) + "\n")
            # calculate_flops()
            print("Training...")
            trainer.train()
            print("Training Finished\n\n")
        except KeyboardInterrupt:
            trainer.save_model()

    elif config_args.train_or_test == 'test':
        # print("FLOPs for single inference \n")
        # calculate_flops()
        # This can be 'val' or 'test' or even 'train' according to the needs.
        print("Testing...")
        trainer.test('val')
        print("Testing Finished\n\n")

    else:
        raise ValueError("Train or Test options only are allowed")