Python utils.log_sum_exp() Examples
The following are 4
code examples of utils.log_sum_exp().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: variational.py From Deep-SAD-PyTorch with MIT License | 5 votes |
def __call__(self, elbo): elbo = elbo.view(self.mc, self.iw, -1) elbo = torch.mean(log_sum_exp(elbo, dim=1, sum_op=torch.mean), dim=0) return elbo.view(-1)
Example #2
Source File: flows.py From torchkit with MIT License | 5 votes |
def forward(self, x, logdet, dsparams, mollify=0.0, delta=nn_.delta): ndim = self.num_ds_dim a_ = self.act_a(dsparams[:,:,0*ndim:1*ndim]) b_ = self.act_b(dsparams[:,:,1*ndim:2*ndim]) w = self.act_w(dsparams[:,:,2*ndim:3*ndim]) a = a_ * (1-mollify) + 1.0 * mollify b = b_ * (1-mollify) + 0.0 * mollify pre_sigm = a * x[:,:,None] + b sigm = torch.sigmoid(pre_sigm) x_pre = torch.sum(w*sigm, dim=2) x_pre_clipped = x_pre * (1-delta) + delta * 0.5 x_ = log(x_pre_clipped) - log(1-x_pre_clipped) xnew = x_ logj = F.log_softmax(dsparams[:,:,2*ndim:3*ndim], dim=2) + \ nn_.logsigmoid(pre_sigm) + \ nn_.logsigmoid(-pre_sigm) + log(a) logj = utils.log_sum_exp(logj,2).sum(2) logdet_ = logj + np.log(1-delta) - \ (log(x_pre_clipped) + log(-x_pre_clipped+1)) logdet = logdet_.sum(1) + logdet return xnew, logdet
Example #3
Source File: flows.py From torchkit with MIT License | 5 votes |
def forward(self, x, logdet, dsparams): inv = np.log(np.exp(1-nn_.delta)-1) ndim = self.hidden_dim pre_u = self.u_[None,None,:,:]+dsparams[:,:,-self.in_dim:][:,:,None,:] pre_w = self.w_[None,None,:,:]+dsparams[:,:,2*ndim:3*ndim][:,:,None,:] a = self.act_a(dsparams[:,:,0*ndim:1*ndim]+inv) b = self.act_b(dsparams[:,:,1*ndim:2*ndim]) w = self.act_w(pre_w) u = self.act_u(pre_u) pre_sigm = torch.sum(u * a[:,:,:,None] * x[:,:,None,:], 3) + b sigm = torch.sigmoid(pre_sigm) x_pre = torch.sum(w*sigm[:,:,None,:], dim=3) x_pre_clipped = x_pre * (1-nn_.delta) + nn_.delta * 0.5 x_ = log(x_pre_clipped) - log(1-x_pre_clipped) xnew = x_ logj = F.log_softmax(pre_w, dim=3) + \ nn_.logsigmoid(pre_sigm[:,:,None,:]) + \ nn_.logsigmoid(-pre_sigm[:,:,None,:]) + log(a[:,:,None,:]) # n, d, d2, dh logj = logj[:,:,:,:,None] + F.log_softmax(pre_u, dim=3)[:,:,None,:,:] # n, d, d2, dh, d1 logj = utils.log_sum_exp(logj,3).sum(3) # n, d, d2, d1 logdet_ = logj + np.log(1-nn_.delta) - \ (log(x_pre_clipped) + log(-x_pre_clipped+1))[:,:,:,None] logdet = utils.log_sum_exp( logdet_[:,:,:,:,None] + logdet[:,:,None,:,:], 3).sum(3) # n, d, d2, d1, d0 -> n, d, d2, d0 return xnew, logdet
Example #4
Source File: variational.py From semi-supervised-pytorch with MIT License | 5 votes |
def __call__(self, elbo): elbo = elbo.view(self.mc, self.iw, -1) elbo = torch.mean(log_sum_exp(elbo, dim=1, sum_op=torch.mean), dim=0) return elbo.view(-1)